A new procedure is presented for direct generation of surface micropatterns on uniaxially oriented polyethylene (PE) films using interference holography with a nanosecond pulsed laser. An ultraviolet absorber, 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (BZT) is incorporated into PE prior to stretching to generate absorption at the wavelength of the laser. Illumination with an interference pattern in the absorption band of BZT leads to an obvious height variation in the exposed regions and consequently relief gratings are generated.
View Article and Find Full Text PDFWhile self-assembled molecular building blocks could lead to many next-generation functional organic nanomaterials, control over the thin-film morphologies to yield monolithic sub-5 nm patterns with 3D orientational control at macroscopic length scales remains a grand challenge. A series of photoresponsive hybrid oligo(dimethylsiloxane) liquid crystals that form periodic cylindrical nanostructures with periodicities between 3.8 and 5.
View Article and Find Full Text PDFHighly ordered nanopatterns are obtained at sub-5 nm periodicities by the graphoepitaxial directed self-assembly of monodisperse, oligo(dimethylsiloxane) liquid crystals. These hybrid organic/inorganic liquid crystals are of high interest for nanopatterning applications due to the combination of their ultrasmall feature sizes and their ability to be directed into highly ordered domains without additional annealing.
View Article and Find Full Text PDFLine patterns produced by lamellae- and cylinder-forming block copolymer (BCP) thin films are of widespread interest for their potential to enable nanoscale patterning over large areas. In order for such patterning methods to effectively integrate with current technologies, the resulting patterns need to have low defect densities, and be produced in a short timescale. To understand whether a given polymer or annealing method might potentially meet such challenges, it is necessary to examine the evolution of defects.
View Article and Find Full Text PDFThe self-assembly of block copolymer (BCP) thin films is a versatile method for producing periodic nanoscale patterns with a variety of shapes. The key to attaining a desired pattern or structure is the annealing step undertaken to facilitate the reorganization of nanoscale phase-segregated domains of the BCP on a surface. Annealing BCPs on silicon substrates using a microwave oven has been shown to be very fast (seconds to minutes), both with and without contributions from solvent vapor.
View Article and Find Full Text PDFBlock copolymers can be used to template large arrays of nanopatterns with periodicities equal to the characteristic spacing of the polymer. Here we demonstrate a technique capitalizing on the multilayered arrangement of cylindrical domains to effectively double the pattern density templated by a given polymer. By controlling the initial thickness of the film and the solvent annealing conditions, it was possible to reproducibly create density doubled lines by swelling the film with solvent until bilayers of horizontal cylinders were obtained.
View Article and Find Full Text PDFBlock copolymer self-assembly is an innovative technology capable of patterning technologically relevant substrates with nanoscale precision for a range of applications from integrated circuit fabrication to tissue interfacing, for example. In this article, we demonstrate a microwave-based method of rapidly inducing order in block copolymer structures. The technique involves the usage of a commercial microwave reactor to anneal block copolymer films in the presence of appropriate solvents, and we explore the effect of various parameters over the polymer assembly speed and defect density.
View Article and Find Full Text PDFThe creation of gold surfaces modified by single- or double-stranded DNA self-assembled monolayers (SAMs) is shown to produce heterogeneous surface packing densities through the use of electrochemical studies coupled with fluorescence imaging. The modified surfaces created by direct adsorption of thiolate DNA [followed by passivation with mecaptohexanol (MCH)] resulted in regions covered by a monolayer of DNA SAM and other regions that were coated by large particles of DNA. The difference in fluorescence intensity measured from these regions was dramatic.
View Article and Find Full Text PDF