Publications by authors named "Jeffrey Moseley"

Advances in sequencing technology have unveiled examples of nucleus-encoded polycistronic genes, once considered rare. Exclusively polycistronic transcripts are prevalent in green algae, although the mechanism by which multiple polypeptides are translated from a single transcript is unknown. Here, we used bioinformatic and in vivo mutational analyses to evaluate competing mechanistic models for polycistronic expression in green algae.

View Article and Find Full Text PDF

Unlabelled: Successful acclimation to copper (Cu) deficiency involves a fine balance between Cu import and export. In the green alga Chlamydomonas reinhardtii, Cu import is dependent on a transcription factor, Copper Response Regulator 1 (CRR1), responsible for activating genes in Cu-deficient cells. Among CRR1 target genes are two Cu transporters belonging to the CTR/COPT gene family (CTR1 and CTR2) and a related soluble protein (CTR3).

View Article and Find Full Text PDF

Algae are diverse organisms with significant biotechnological potential for resource circularity. Taking inspiration from fermentative microbes, engineering algal genomes holds promise to broadly expand their application ranges. Advances in genome sequencing with improvements in DNA synthesis and delivery techniques are enabling customized molecular tool development to confer advanced traits to algae.

View Article and Find Full Text PDF

Successful acclimation to copper (Cu) deficiency involves a fine balance between Cu import and export. In the unicellular green alga , Cu import is dependent on C opper R esponse R egulator 1 (CRR1), the master regulator of Cu homeostasis. Among CRR1 target genes are two Cu transporters belonging to the CTR/COPT gene family ( and ) and a related soluble cysteine-rich protein (CTR3).

View Article and Find Full Text PDF

Plastocyanin and cytochrome c, abundant proteins in photosynthesis, are readouts for cellular copper status in Chlamydomonas and other algae. Their accumulation is controlled by a transcription factor copper response regulator (CRR1). The replacement of copper-containing plastocyanin with heme-containing cytochrome c spares copper and permits preferential copper (re)-allocation to cytochrome oxidase.

View Article and Find Full Text PDF

Nitrogen (N) is a key nutrient that limits global primary productivity; hence, N-use efficiency is of compelling interest in agriculture and aquaculture. We used Chlamydomonas reinhardtii as a reference organism for a multicomponent analysis of the N starvation response. In the presence of acetate, respiratory metabolism is prioritized over photosynthesis; consequently, the N-sparing response targets proteins, pigments, and RNAs involved in photosynthesis and chloroplast function over those involved in respiration.

View Article and Find Full Text PDF

During sulfur (S) deprivation, the unicellular alga Chlamydomonas reinhardtii exhibits increased expression of numerous genes. These genes encode proteins associated with sulfate (SO4(2-)) acquisition and assimilation, alterations in cellular metabolism, and internal S recycling. Administration of the cytoplasmic translational inhibitor cycloheximide prevents S deprivation-triggered accumulation of transcripts encoding arylsulfatases (ARS), an extracellular polypeptide that may be important for cell wall biosynthesis (ECP76), a light-harvesting protein (LHCBM9), the selenium-binding protein, and the haloperoxidase (HAP2).

View Article and Find Full Text PDF

There are numerous sources of bioenergy that are generated by photosynthetic processes, for example, lipids, alcohols, hydrogen, and polysaccharides. However, generally only a small fraction of solar energy absorbed by photosynthetic organisms is converted to a form of energy that can be readily exploited. To more efficiently use the solar energy harvested by photosynthetic organisms, we evaluated the feasibility of generating bioelectricity by directly extracting electrons from the photosynthetic electron transport chain before they are used to fix CO(2) into sugars and polysaccharides.

View Article and Find Full Text PDF

The Chlamydomonas reinhardtii PSR1 gene is required for proper acclimation of the cells to phosphorus (P) deficiency. P-starved psr1 mutants show signs of secondary sulfur (S) starvation, exemplified by the synthesis of extracellular arylsulfatase and the accumulation of transcripts encoding proteins involved in S scavenging and assimilation. Epistasis analysis reveals that induction of the S-starvation responses in P-limited psr1 cells requires the regulatory protein kinase SNRK2.

View Article and Find Full Text PDF

Ultra-sharp nano-probes and customized atomic force microscopy (AFM) have previously been developed in our laboratory for in situ sub-cellular probing of electrochemical phenomena in living plant cells during their photosynthesis. However, this AFM-based electrochemical probing still has numerous engineering challenges such as immobilization of the live cells, compatibility of the immobilization procedure with AFM manipulation of the probe, maintenance of biological activity of the cells for an extended time while performing the measurements, and minimization of electrochemical noise. Thus, we have developed an open micro-fluidic channel system (OMFC) in which individual cells can be immobilized in micro-traps by capillary flow.

View Article and Find Full Text PDF

Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the approximately 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella.

View Article and Find Full Text PDF

Photosynthetic organisms are among the earliest life forms on earth and their biochemistry is strictly dependent on a wide range of inorganic nutrients owing to the use of metal cofactor-dependent enzymes in photosynthesis, respiration, inorganic nitrogen and sulfur assimilation. Chlamydomonas reinhardtii is a photosynthetic eukaryotic model organism for the study of trace metal homeostasis. Chlamydomonas spp.

View Article and Find Full Text PDF

The Chlamydomonas reinhardtii transcription factor PSR1 is required for the control of activities involved in scavenging phosphate from the environment during periods of phosphorus limitation. Increased scavenging activity reflects the development of high-affinity phosphate transport and the expression of extracellular phosphatases that can cleave phosphate from organic compounds in the environment. A comparison of gene expression patterns using microarray analyses and quantitative PCRs with wild-type and psr1 mutant cells deprived of phosphorus has revealed that PSR1 also controls genes encoding proteins with potential "electron valve" functions--these proteins can serve as alternative electron acceptors that help prevent photodamage caused by overexcitation of the photosynthetic electron transport system.

View Article and Find Full Text PDF

During sulfur deprivation, the photosynthetic green alga Chlamydomonas reinhardtii develops a high-affinity sulfate uptake system and increases the expression of genes encoding proteins involved in sulfur assimilation. Although two regulatory elements, SAC1 and SAC3, have been shown to be required for normal acclimation of C. reinhardtii to sulfur deprivation, a number of other regulatory elements appear to also be involved.

View Article and Find Full Text PDF

Organisms exhibit a diverse set of responses when exposed to low-phosphate conditions. Some of these responses are specific for phosphorus limitation, including responses that enable cells to efficiently scavenge phosphate from internal and external stores via the production of high-affinity phosphate transporters and the synthesis of intracellular and extracellular phosphatases. Other responses are general and occur under a number of different environmental stresses, helping coordinate cellular metabolism and cell division with the growth potential of the cell.

View Article and Find Full Text PDF

A genetic screen for Chlamydomonas reinhardtii mutants with copper-dependent growth or nonphotosynthetic phenotypes revealed three loci, COPPER RESPONSE REGULATOR 1 (CRR1), COPPER RESPONSE DEFECT 1 (CRD1), and COPPER RESPONSE DEFECT 2 (CRD2), distinguished as regulatory or target genes on the basis of phenotype. CRR1 was shown previously to be required for transcriptional activation of target genes like CYC6, CPX1, and CRD1, encoding, respectively, cytochrome c(6) (which is a heme-containing substitute for copper-containing plastocyanin), coproporphyrinogen III oxidase, and Mg-protoporphyrin IX monomethylester cyclase. We show here that CRR1 is required also for normal accumulation of copper proteins like plastocyanin and ferroxidase in copper-replete medium and for apoplastocyanin degradation in copper-deficient medium, indicating that a single pathway controls nutritional copper homeostasis at multiple levels.

View Article and Find Full Text PDF

The molecular mechanisms underlying the onset of Fe-deficiency chlorosis and the maintenance of photosynthetic function in chlorotic chloroplasts are relevant to global photosynthetic productivity. We describe a series of graded responses of the photosynthetic apparatus to Fe-deficiency, including a novel response that occurs prior to the onset of chlorosis, namely the disconnection of the LHCI antenna from photosystem I (PSI). We propose that disconnection is mediated by a change in the physical properties of PSI-K in PSI in response to a change in plastid Fe content, which is sensed through the occupancy, and hence activity, of the Fe-containing active site in Crd1.

View Article and Find Full Text PDF

The unicellular green alga Chlamydomonas reinhardtii is a valuable model for studying metal metabolism in a photosynthetic background. A search of the Chlamydomonas expressed sequence tag database led to the identification of several components that form a copper-dependent iron assimilation pathway related to the high-affinity iron uptake pathway defined originally for Saccharomyces cerevisiae. They include a multicopper ferroxidase (encoded by Fox1), an iron permease (encoded by Ftr1), a copper chaperone (encoded byAtx1), and a copper-transporting ATPase.

View Article and Find Full Text PDF

Crd1 (Copper response defect 1), which is required for the maintenance of photosystem I and its associated light-harvesting complexes in copper-deficient (-Cu) and oxygen-deficient (-O(2)) Chlamydomonas reinhardtii cells, is localized to the thylakoid membrane. A related protein, Cth1 (Copper target homolog 1), is shown to have a similar but not identical function by genetic suppressor analysis of gain-of-function sct1 (suppressor of copper target 1) strains that are transposon-containing alleles at CTH1. The pattern of Crd1 versus Cth1 accumulation is reciprocal; Crd1 abundance is increased in -Cu or -O(2) cells, whereas Cth1 accumulates in copper-sufficient (+Cu), oxygenated cells.

View Article and Find Full Text PDF

Chlamydomonas reinhardtii activates Cpx1, Cyc6, and Crd1, encoding, respectively, coproporphyrinogen oxidase, cytochrome c(6), and a novel di-iron enzyme when transferred to oxygen-deficient growth conditions. This response is physiologically relevant because C. reinhardtii experiences these growth conditions routinely, and furthermore, one of the target genes, Crd1, is functionally required for normal growth under oxygen-depleted conditions.

View Article and Find Full Text PDF