Publications by authors named "Jeffrey Mogil"

Chronobiological approaches have emerged as tools to study pain and inflammation. Although time-of-day effects on the expression of pain after injury have been studied, it remains unaddressed whether the timing of the injury itself can alter subsequent pain behaviors. The aim of this study was to assess postsurgical pain behaviors in a mouse hind paw incision assay in a circadian-dependent manner.

View Article and Find Full Text PDF

Facial grimacing is used to quantify spontaneous pain in mice and other mammals, but scoring relies on humans with different levels of proficiency. Here, we developed a cloud-based software platform called PainFace ( http://painface.net ) that uses machine learning to detect 4 facial action units of the mouse grimace scale (orbitals, nose, ears, whiskers) and score facial grimaces of black-coated C57BL/6 male and female mice on a 0 to 8 scale.

View Article and Find Full Text PDF
Article Synopsis
  • Spinal nociceptive circuits become sensitized in neuropathic pain, largely influenced by gene expression changes through transcriptional and translational controls.
  • The study indicates that during chronic neuropathic pain, it's primarily translational regulation that impacts gene expression in the spinal cord.
  • Findings show that regulating translation in specific spinal neurons, particularly inhibitory ones, significantly affects pain sensitivity, with increased translation in these neurons linked to heightened hypersensitivity.
View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the genetic factors contributing to chronic post-surgical pain (CPSP) by analyzing data from 1,350 individuals who underwent various types of surgery, and highlights a significant genetic component, estimating a 39% heritability for CPSP through meta-analysis.
  • - Researchers identified 77 key genetic variations (SNPs) linked to CPSP and noted that most of these are associated with immune system genes, especially those related to B and T cells.
  • - Animal studies showed that mice without T and B cells experienced worsened pain after surgery, which could be mitigated by transferring B cells, suggesting that the adaptive immune system plays a crucial protective role against CPSP.
View Article and Find Full Text PDF

The introduction of sex-as-a-biological-variable policies at funding agencies around the world has led to an explosion of very recent observations of sex differences in the biology underlying pain. This review considers evidence of sexually dimorphic mechanisms mediating pain hypersensitivity, derived from modern assays of persistent pain in rodent animal models. Three well-studied findings are described in detail: the male-specific role of spinal cord microglia, the female-specific role of calcitonin gene-related peptide (CGRP), and the female-specific role of prolactin and its receptor.

View Article and Find Full Text PDF

The measurement of withdrawal to experimenter-delivered mechanical stimuli (von Frey test) and to heat stimuli (radiant heat paw-withdrawal or Hargreaves' test) applied to the hind paws is ubiquitous in preclinical pain research, but no normative values for the most-common applications of these tests have ever been published. We analyzed a retrospective data set of withdrawal thresholds or latencies in 8,150 mice in which these measures were taken using replicate determinations, before and after injection of inflammatory substances or experimental nerve damage producing pain hypersensitivity, totaling 97,332 measurements. All mice were tested in the same physical laboratory over a 20-year period using similar equipment and procedures.

View Article and Find Full Text PDF

Chronic post-surgical pain affects a large proportion of people undergoing surgery, delaying recovery time and worsening quality of life. Although many environmental variables have been established as risk factors, less is known about genetic risk. To uncover genetic risk factors we performed genome-wide association studies in post-surgical cohorts of five surgery types- hysterectomy, mastectomy, abdominal, hernia, and knee- totaling 1350 individuals.

View Article and Find Full Text PDF

Descending control of nociception (DCN; also known as conditioned pain modulation [CPM], the behavioral correlate of diffuse noxious inhibitory controls) is the phenomenon whereby pain inhibits pain in another part of the body and is the subject of increasing study because it may represent a biomarker of chronic pain. We recently discovered that pain modulation on the application of a DCN paradigm involving low-intensity test stimuli occurs in the direction of hyperalgesia in healthy mice and rats, whereas the use of high-intensity stimuli produces analgesia. To elucidate the physiological mechanisms underlying hyperalgesic DCN, we administered agonists and antagonists of norepinephrine (NE) and serotonin (5-HT) receptors, key neurochemical players in the production of analgesic DCN.

View Article and Find Full Text PDF

Repeated or prolonged, but not short-term, general anesthesia during the early postnatal period causes long-lasting impairments in memory formation in various species. The mechanisms underlying long-lasting impairment in cognitive function are poorly understood. Here, we show that repeated general anesthesia in postnatal mice induces preferential apoptosis and subsequent loss of parvalbumin-positive inhibitory interneurons in the hippocampus.

View Article and Find Full Text PDF

Pain needs to be measured in order to be studied and managed. Pain measurement strategies in both humans and non-human animals have varied widely over the years and continue to evolve. This review describes the historical development of human and animal algesiometry.

View Article and Find Full Text PDF

Human epidemiological studies suggest that chronic pain can increase mortality risk. We investigated whether this was true in mice so that underlying mechanisms might be identified. At 10 weeks of age, C57BL/6 mice of both sexes received sham or spared nerve injury (SNI) surgery producing neuropathic pain.

View Article and Find Full Text PDF

Activation of microglia in the spinal cord dorsal horn after peripheral nerve injury contributes to the development of pain hypersensitivity. How activated microglia selectively enhance the activity of spinal nociceptive circuits is not well understood. We discovered that after peripheral nerve injury, microglia degrade extracellular matrix structures, perineuronal nets (PNNs), in lamina I of the spinal cord dorsal horn.

View Article and Find Full Text PDF

In an attempt to improve reproducibility, more attention is being paid to potential sources of stress in the laboratory environment. Here, we report that the mere proximity of pregnant or lactating female mice causes olfactory-mediated stress-induced analgesia, to a variety of noxious stimuli, in gonadally intact male mice. We show that exposure to volatile compounds released in the urine of pregnant and lactating female mice can themselves produce stress and associated pain inhibition.

View Article and Find Full Text PDF

The encoding of noxious stimuli into action potential firing is largely mediated by nociceptive free nerve endings. Tissue inflammation, by changing the intrinsic properties of the nociceptive endings, leads to nociceptive hyperexcitability and thus to the development of inflammatory pain. Here, we showed that tissue inflammation-induced activation of the mammalian target of rapamycin complex 2 (mTORC2) triggers changes in the architecture of nociceptive terminals and leads to inflammatory pain.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how acute pain becomes chronic pain using 98 people with low back pain (LBP) and looked at their immune cells over 3 months.
  • They found that people whose pain went away showed many changes in their immune cells, but those whose pain continued didn’t have any changes.
  • Giving treatments like NSAIDs early might help with pain at first, but could actually make long-term pain worse, according to both mouse tests and observations of humans.
View Article and Find Full Text PDF

Mice with experimental nerve damage can display long‑lasting neuropathic pain behavior. We show here that 4 months and later after nerve injury, male but not female mice displayed telomere length (TL) reduction and p53‑mediated cellular senescence in the spinal cord, resulting in maintenance of pain and associated with decreased lifespan. Nerve injury increased the number of p53‑positive spinal cord neurons, astrocytes, and microglia, but only in microglia was the increase male‑specific, matching a robust sex specificity of TL reduction in this cell type, which has been previously implicated in male‑specific pain processing.

View Article and Find Full Text PDF

The mechanisms underlying the transition from acute to chronic pain are unclear but may involve the persistence or strengthening of pain memories acquired in part through associative learning. Contextual cues, which comprise the environment in which events occur, were recently described as a critical regulator of pain memory; both male rodents and humans exhibit increased pain sensitivity in environments recently associated with a single painful experience. It is unknown, however, how repeated exposure to an acute painful unconditioned stimulus in a distinct context modifies pain sensitivity or the expectation of pain in that environment.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used single-cell RNA sequencing to discover that nerve injury creates a specific inflammatory microglia subtype in males, resulting in greater microglial proliferation compared to females.
  • * The findings highlight the gene Apolipoprotein E (Apoe) as being significantly upregulated in chronic pain scenarios and link variations in the human APOE gene to chronic pain, revealing a common disease-related microglial subpopulation in both mice and humans.
View Article and Find Full Text PDF

Best practices in preclinical algesiometry (pain behaviour testing) have shifted over the past decade as a result of technological advancements, the continued dearth of translational progress and the emphasis that funding institutions and journals have placed on rigour and reproducibility. Here we describe the changing trends in research methods by analysing the methods reported in preclinical pain publications from the past 40 years, with a focus on the last 5 years. We also discuss how the status quo may be hampering translational success.

View Article and Find Full Text PDF

Chronic pain is often present at more than one anatomical location, leading to chronic overlapping pain conditions. Whether chronic overlapping pain conditions represent a distinct pathophysiology from the occurrence of pain at only one site is unknown. Using genome-wide approaches, we compared genetic determinants of chronic single-site versus multisite pain in the UK Biobank.

View Article and Find Full Text PDF

Pain is an immense clinical and societal challenge, and the key to understanding and treating it is variability. Robust interindividual differences are consistently observed in pain sensitivity, susceptibility to developing painful disorders, and response to analgesic manipulations. This review examines the causes of this variability, including both organismic and environmental sources.

View Article and Find Full Text PDF