Schistosomes are parasitic blood flukes that infect >200 million people around the world. Free-swimming larval stages penetrate the skin, invade a blood vessel, and migrate through the heart and lungs to the vasculature of the liver, where maturation and mating occurs. From here, the parasite couples migrate to their preferred egg laying sites.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
October 2016
Purpose: The molecular mechanisms controlling aqueous humor (AQH) outflow and IOP need much further definition. The mouse is a powerful system for characterizing the mechanistic basis of AQH outflow. To enhance outflow studies in mice, we developed a perfusion system that is based on human anterior chamber perfusion culture systems.
View Article and Find Full Text PDFJ Appl Biomater Funct Mater
July 2016
Introduction: The need for human cornea tissues continues to grow as an alternative option to donor tissues. Silk protein has been successfully used as a substrate to engineer corneal epithelium and stroma in vitro. Herein, we investigated the in vivo response and the effect of silk crystalline structure (beta sheet) on degradation rate of silk films in rabbit multipocket corneal models.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
October 2015
Purpose: Mutations in the gene encoding collagen type IV alpha 1 (COL4A1) cause multisystem disorders including anterior segment dysgenesis (ASD) and optic nerve hypoplasia. The penetrance and severity of individual phenotypes depends on genetic context. Here, we tested the effects of a Col4a1 mutation in two different genetic backgrounds to compare how genetic context influences ocular dysgenesis, IOP, and progression to glaucoma.
View Article and Find Full Text PDFSchlemm's canal (SC) plays central roles in ocular physiology. These roles depend on the molecular phenotypes of SC endothelial cells (SECs). Both the specific phenotype of SECs and development of SC remain poorly defined.
View Article and Find Full Text PDFGlaucoma is one of the most common neurodegenerative diseases. Despite this, the earliest stages of this complex disease are still unclear. This study was specifically designed to identify early stages of glaucoma in DBA/2J mice.
View Article and Find Full Text PDFRGD-coupled silk protein-biomaterial lamellar systems were prepared and studied with human cornea fibroblasts (hCFs) to match functional requirements. A strategy for corneal tissue engineering was pursued to replicate the structural hierarchy of human corneal stroma within thin stacks of lamellae-like tissues, in this case constructed from scaffolds constructed with RGD-coupled, patterned, porous, mechanically robust and transparent silk films. The influence of RGD-coupling on the orientation, proliferation, ECM organization, and gene expression of hCFs was assessed.
View Article and Find Full Text PDFBiomaterials for corneal tissue engineering must demonstrate several critical features for potential utility in vivo, including transparency, mechanical integrity, biocompatibility and slow biodegradation. Silk film biomaterials were designed and characterized to meet these functional requirements. Silk protein films were used in a biomimetic approach to replicate corneal stromal tissue architecture.
View Article and Find Full Text PDFHere, we use a mouse model (DBA/2J) to readdress the location of insult(s) to retinal ganglion cells (RGCs) in glaucoma. We localize an early sign of axon damage to an astrocyte-rich region of the optic nerve just posterior to the retina, analogous to the lamina cribrosa. In this region, a network of astrocytes associates intimately with RGC axons.
View Article and Find Full Text PDFBackground: The glaucomas are a common but incompletely understood group of diseases. DBA/2J mice develop a pigment liberating iris disease that ultimately causes elevated intraocular pressure (IOP) and glaucoma. We have shown previously that mutations in two genes, Gpnmb and Tyrp1, initiate the iris disease.
View Article and Find Full Text PDFOcular anterior segment dysgenesis (ASD) is a complex and poorly understood group of conditions. A large proportion of individuals with ASD develop glaucoma, a leading cause of blindness resulting from retinal ganglion cell death. Optic nerve hypoplasia is thought to have distinct causes and is a leading cause of blindness in children.
View Article and Find Full Text PDFPurpose: To determine whether the expression of Acanthamoeba mannose-binding protein (MBP) is associated with the pathogenicity of the parasite in vitro.
Methods: Both active trophozoites and dormant cysts of a pathogenic strain of A. castellanii were analyzed for their ability to bind to corneal epithelium, express MBP, and produce a cytopathic effect (CPE) on host cells.
Acanthamoebae produce a painful, sight-threatening corneal infection. The adhesion of parasites to the host cells is a critical first step in the pathogenesis of infection. Subsequent to adhesion, the parasites produce a potent cytopathic effect (CPE) leading to target cell death.
View Article and Find Full Text PDFThe anterior avian cornea possesses several distinct cellular and extracellular regions including the epithelial basal lamina, Bowman's layer and the interfacial matrix that separates Bowman's layer from the stroma. These unique regions differ biochemically, physically and morphologically but all contain type XII collagen. Previously, the collagen fibrils of several of these interfacial regions were shown to be stable to thermal and enzymatic denaturation.
View Article and Find Full Text PDF