Background: The Critical Assessment of Functional Annotation (CAFA) is an ongoing, global, community-driven effort to evaluate and improve the computational annotation of protein function.
Results: Here, we report on the results of the third CAFA challenge, CAFA3, that featured an expanded analysis over the previous CAFA rounds, both in terms of volume of data analyzed and the types of analysis performed. In a novel and major new development, computational predictions and assessment goals drove some of the experimental assays, resulting in new functional annotations for more than 1000 genes.
Bioinformatics
February 2019
Motivation: Critical evaluation of methods for protein function prediction shows that data integration improves the performance of methods that predict protein function, but a basic BLAST-based method is still a top contender. We sought to engineer a method that modernizes the classical approach while avoiding pitfalls common to state-of-the-art methods.
Results: We present a method for predicting protein function, Effusion, which uses a sequence similarity network to add context for homology transfer, a probabilistic model to account for the uncertainty in labels and function propagation, and the structure of the Gene Ontology (GO) to best utilize sparse input labels and make consistent output predictions.
The biological interpretation of gene lists with interesting shared properties, such as up- or down-regulation in a particular experiment, is typically accomplished using gene ontology enrichment analysis tools. Given a list of genes, a gene ontology (GO) enrichment analysis may return hundreds of statistically significant GO results in a "flat" list, which can be challenging to summarize. It can also be difficult to keep pace with rapidly expanding biological knowledge, which often results in daily changes to any of the over 47,000 gene ontologies that describe biological knowledge.
View Article and Find Full Text PDFThe Structure-Function Linkage Database (SFLD, http://sfld.rbvi.ucsf.
View Article and Find Full Text PDFAutomated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high.
View Article and Find Full Text PDF