Frustules, or the silica based cell walls of diatomaceous algae , provide large numbers of reliably cylindrical microstructures with an inner cavity and surface chemistry suitable for constructing bubble-based, acoustically-powered micro-swimmers. In this way, microswimmers can be made in a scalable, accessible and low-cost manner, enabling studies of their individual and collective behavior as active colloids.
View Article and Find Full Text PDFACS Nanosci Au
December 2023
Micro- and nanoscopic particles that swim autonomously and self-assemble under the influence of chemical fuels and external fields show promise for realizing systems capable of carrying out large-scale, predetermined tasks. Different behaviors can be realized by tuning swimmer interactions at the individual level in a manner analogous to the emergent collective behavior of bacteria and mammalian cells. However, the limited toolbox of weak forces with which to drive these systems has made it difficult to achieve useful collective functions.
View Article and Find Full Text PDFThe process of dynamic self-organization of small building blocks is fundamental to the emergent function of living systems and is characteristic of their out-of-equilibrium homeostasis. The ability to control the interactions of synthetic particles in large groups could lead to the realization of analogous macroscopic robotic systems with microscopic complexity. Rotationally induced self-organization has been observed in biological systems and modeled theoretically, but studies of fast, autonomously moving synthetic rotors remain rare.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2022
Self-powered, biocompatible pumps in the nanometer to micron length scale have the potential to enable technology in several fields, including chemical analysis and medical diagnostics. Chemically powered, catalytic micropumps have been developed but are not able to function well in biocompatible environments due to their intolerance of salt solutions and the use of toxic fuels. In contrast, enzymatically powered catalytic pumps offer good biocompatibility, selectivity, and scalability, but their performance at length scales below a few millimeters, which is important to many of their possible applications, has not been well tested.
View Article and Find Full Text PDFDilemmaones A-C are naturally occurring tricyclic indole alkaloids possessing a unique hydroxymethylene or methoxymethylene substituent at the C2 position of the indole core and a C6-C7 fused cyclopentanone. Dilemmaone B has been prepared in 5 steps from 5-methylindan-1-one, and dilemmaone A has been prepared in 3 steps from a common precursor, 6-bromo-5-methyl-7-nitroindan-1-one. In both syntheses, key steps include a Kosugi-Migita-Stille cross coupling and a reductive cyclization using hydrogen gas and a transition metal catalyst.
View Article and Find Full Text PDFFuel-free, biocompatible swimmers with dimensions smaller than one micrometer have the potential to revolutionize the way we study and manipulate microscopic systems. Sub-micrometer, metallic Janus particles can be propelled rapidly and autonomously by acoustically induced fluid streaming, but their operation at acoustic pressure nodes limits their utility. In contrast, bubble-based microswimmers have an "on board" resonant cavity that enables them to operate far from the source of acoustic power.
View Article and Find Full Text PDFA molecularly thin layer of 2-aminobenzenethiol (2-ABT) was adsorbed onto nanoporous p-type silicon (b-Si) photocathodes decorated with Ag nanoparticles (Ag NPs). The addition of 2-ABT alters the balance of the CO reduction and hydrogen evolution reactions, resulting in more selective and efficient reduction of CO to CO. The 2-ABT adsorbate layer was characterized by Fourier transform infrared (FTIR) spectroscopy and modeled by density functional theory calculations.
View Article and Find Full Text PDFThe ability to precisely maneuver micro/nano objects in fluids in a contactless, biocompatible manner can enable innovative technologies and may have far-reaching impact in fields such as biology, chemical engineering, and nanotechnology. Here, we report a design for acoustically powered bubble-based microswimmers that are capable of autonomous motion in three dimensions and selectively transporting individual synthetic colloids and mammalian cells in a crowded group without labeling, surface modification, or effect on nearby objects. In contrast to previously reported microswimmers, their motion does not require operation at acoustic pressure nodes, enabling propulsion at low power and far from an ultrasonic transducer.
View Article and Find Full Text PDF