Publications by authors named "Jeffrey M Gaudet"

Magnetic particle imaging (MPI) is an emerging imaging technique, which has the potential to provide the sensitivity, specificity and temporal resolution necessary for novel imaging advances in neurological applications. MPI relies on the detection of superparamagnetic iron-oxide nanoparticles, which allows for visualization and quantification of iron or iron-labeled cells throughout a subject. The combination of these qualities can be used to image many neurological conditions including cancer, inflammatory processes, vascular-related issues and could even focus on cell therapies and theranostics to treat these problems.

View Article and Find Full Text PDF

Magnetic particle imaging (MPI), using superparamagnetic nanoparticles as an imaging tracer, is touted as a quantitative biomedical imaging technology, but MPI signal properties have never been characterized for magnetic nanoparticles undergoing biodegradation. We show that MPI signal properties can increase or decrease as iron oxide nanoparticles degrade, depending on the nanoparticle formulation and nanocrystal size, and degradation rate and mechanism. Further, we show that long-term in vitro MPI experiments only roughly approximate long-term in vivo MPI signal properties.

View Article and Find Full Text PDF

Purpose: Magnetic particle imaging (MPI) is an emerging molecular imaging technique that directly detects iron nanoparticles distributed in living subjects. Compared with imaging iron with magnetic resonance imaging (MRI), MPI signal can be measured to determine iron content in specific regions. In this paper, the detection of iron-labeled macrophages associated with cancer by MRI and MPI was compared.

View Article and Find Full Text PDF

Purpose: A major hurdle in the advancement of cell-based cancer immunotherapies is the inability to track in vivo therapeutic cell migration. With respect to dendritic cell (DC)-based cancer immunotherapies, this lack of knowledge represents an even greater hurdle as the quantity of tumor-antigen specific DC reaching a secondary lymphoid organ post injection is predictive of the magnitude of the ensuing tumor-specific immune response. We propose fluorine-19 (F-19) cellular magnetic resonance imaging (MRI) as a suitable and non-invasive imaging modality capable of detecting and quantifying DC migration in vivo and thus, serving as a surrogate marker of DC-based immunotherapeutic effectiveness.

View Article and Find Full Text PDF

A Fluorine (F) perfluorocarbon cell labeling agent, when employed with an appropriate cellular MRI protocol, allows for in vivo cell tracking. F cellular MRI can be used to non-invasively assess the location and persistence of cell-based cancer vaccines and other cell-based therapies. This study was designed to determine the feasibility of labeling and tracking peripheral blood mononuclear cells (PBMC), a heterogeneous cell population.

View Article and Find Full Text PDF

Tumor associated macrophages (TAMs) are associated with tumor growth and metastasis. MRI can detect TAMs labeled with iron oxide (USPIO) or perfluorocarbon (PFC) agents. This study compared these two cell tracking approaches for imaging TAMs in vivo.

View Article and Find Full Text PDF

Cellular magnetic resonance imaging (MRI) is an evolving field of imaging with strong translational and research potential. The ability to detect, track, and quantify cells in vivo and over time allows for studying cellular events related to disease processes and may be used as a biomarker for decisions about treatments and for monitoring responses to treatments. In this review, we discuss methods for labeling cells, various applications for cellular MRI, the existing limitations, strategies to address these shortcomings, and clinical cellular MRI.

View Article and Find Full Text PDF

Purpose: Cellular MRI) was used to detect implanted human mesenchymal stem cells (hMSCs) and the resulting macrophage infiltration that occurs in response to xenotransplantation.

Methods: Human mesenchymal stem cells were prelabeled with a fluorine-19 ( F) agent prior to implantation, allowing for their visualization and quantification over time. Following implantation of 1 × 10 F-labeled hMSCs into the mouse hind limb, longitudinal imaging was performed to monitor the stem cell graft.

View Article and Find Full Text PDF

Background: In this study we used cellular magnetic resonance imaging (MRI) to detect mesenchymal stem cells (MSC) labeled with a Fluorine-19 (19F) agent. 19F-MRI offers unambiguous detection and in vivo quantification of labeled cells.

Methods: We investigated two common stem cell transplant mouse models: an immune competent, syngeneic transplant model and an immune compromised, xenograft transplant model.

View Article and Find Full Text PDF

Fluorine-19 ((19)F)-based contrast agents for magnetic resonance imaging stand to revolutionize imaging-based research and clinical trials in several fields of medical intervention. First, their use in characterizing in vivo cell behavior may help bring cellular therapy closer to clinical acceptance. Second, their use in lung imaging provides novel noninvasive interrogation of the ventilated airspaces without the need for complicated, hard-to-distribute hardware.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSC) are used to restore deteriorated cell environments. There is a need to specifically track these cells following transplantation in order to evaluate different methods of implantation, to follow their migration within the body, and to quantify their accumulation at the target. Cellular magnetic resonance imaging (MRI) using fluorine-based nanoemulsions is a great means to detect these transplanted cells in vivo because of the high specificity for fluorine detection and the capability for precise quantification.

View Article and Find Full Text PDF