To assess the regenerative properties and potential therapeutic value of adipose-derived stem cells (ASCs) in the bottlenose dolphin, there is a need to determine whether an adequate adipose depot exists, in addition to the development of a standardized technique for minimally invasive adipose collection. In this study, an ultrasound-guided liposuction technique for adipose collection was assessed for its safety and efficacy. The ultrasound was utilized to identify and measure the postnuchal adipose depot and aid in the guidance of the liposuction cannula during aspiration.
View Article and Find Full Text PDFBackground: Chronic kidney disease (CKD) is a major public health problem, and despite continued research in the field, there is still a need to identify both biomarkers of risk and progression, as well as potential therapeutic targets. Structural equation modeling (SEM) is a family of statistical techniques that has been utilized in the fields of sociology and psychology for many years; however, its utilization in the biological sciences is relatively novel. SEM's ability to investigate complex relationships in an efficient, single model could be utilized to understand the progression of CKD, as well as to develop a predictive model to assess kidney status in the patient.
View Article and Find Full Text PDFQuantification of polycyclic aromatic hydrocarbons (PAH) and their metabolites within living cells and tissues in real time using fluorescence methods is complicated due to overlaping excitation and/or emission spectra of metabolites. In this study, simultaneous analysis of several metabolites of a prototype carcinogenic PAH, benzo[a]pyrene (BaP) in undifferentiated (MCF10A) and differentiated (MCF10CA1h) breast cancer cells was performed using single-cell multiphoton spectral analysis. The two cell types were selected for this study because they are known to have differences in BaP uptake and metabolism and induction of aryl hydrocarbon receptor-dependent ethoxyresorufin-O-deethylase (EROD) activity.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
January 2008
The cadherins are cell adhesion molecules required for cellular homeostasis, and N-cadherin is the predominant cadherin expressed in proximal tubular epithelial cells in humans and rats. Our laboratory previously reported an age-dependent decrease in renal N-cadherin expression; the levels of N-cadherin mRNA and protein expression decreased in parallel, implicating a transcriptional mechanism in the age-dependent loss of expression (19). In this study, we examined the hypothesis that promoter hypermethylation underlies the loss of N-cadherin expression in aging rat kidney.
View Article and Find Full Text PDFAlthough ischemia is associated with disruption of cadherin-mediated adhesion in renal cell lines, the impact of decreased cadherin function on the transcriptional activity of beta-catenin remains poorly defined. In these studies, we used a simulated ischemia model in normal rat kidney (NRK) cells to disrupt cadherin function. Cell viability; cadherin/catenin expression, function, and localization; and beta-catenin-mediated transcriptional activity were assessed during ischemia/reperfusion.
View Article and Find Full Text PDF