Publications by authors named "Jeffrey M Axten"

In cystic fibrosis (CF), excessive furin activity plays a critical role in the activation of the epithelial sodium channel (ENaC), dysregulation of which contributes to airway dehydration, ineffective mucociliary clearance (MCC), and mucus obstruction. Here, we report a highly selective, cell-permeable furin inhibitor, BOS-318, that derives selectivity by eliciting the formation of a new, unexpected binding pocket independent of the active site catalytic triad. Using human ex vivo models, BOS-318 showed significant suppression of ENaC, which led to enhanced airway hydration and an ∼30-fold increase in MCC rate.

View Article and Find Full Text PDF

Tauopathies are a group of more than twenty known disorders that involve progressive neurodegeneration, cognitive decline and pathological tau accumulation. Current therapeutic strategies provide only limited, late-stage symptomatic treatment. This is partly due to lack of understanding of the molecular mechanisms linking tau and cellular dysfunction, especially during the early stages of disease progression.

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

Accumulation of unfolded proteins at the endoplasmic reticulum (ER) is a salient attribute of many human diseases including obesity, liver disorders, cancer, diabetes and neurodegeneration. To restore ER proteostasis, cells activate the unfolded protein response (UPR), a signaling pathway that imposes adaptive programs or triggers apoptosis of damaged cells. The UPR is critical to sustain the normal function of specialized secretory cells (i.

View Article and Find Full Text PDF

Marinesco-Sjögren syndrome (MSS) is a rare, early onset, autosomal recessive multisystem disorder characterized by cerebellar ataxia, cataracts and myopathy. Most MSS cases are caused by loss-of-function mutations in the gene encoding SIL1, a nucleotide exchange factor for the molecular chaperone BiP which is essential for correct protein folding in the endoplasmic reticulum. Woozy mice carrying a spontaneous Sil1 mutation recapitulate key pathological features of MSS, including cerebellar atrophy with degeneration of Purkinje cells and progressive myopathy.

View Article and Find Full Text PDF

Parkinson's disease (PD) is the second most common neurodegenerative disorder, leading to the progressive decline of motor control due to the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Accumulating evidence suggest that altered proteostasis is a salient feature of PD, highlighting perturbations to the endoplasmic reticulum (ER), the main compartment involved in protein folding and secretion. PERK is a central ER stress sensor that enforces adaptive programs to recover homeostasis through a block of protein translation and the induction of the transcription factor ATF4.

View Article and Find Full Text PDF

Neutropenia is a common consequence of radiation and chemotherapy in cancer patients. The resulting immunocompromised patients become highly susceptible to potentially life-threatening infections. Granulocyte colony-stimulating factor (G-CSF) is known to stimulate neutrophil production and is widely used as a treatment of chemotherapy-induced neutropenia.

View Article and Find Full Text PDF

PKR-like endoplasmic reticulum kinase (PERK) is an essential component of the unfolded protein response (UPR) and a critical regulator of protein synthesis during endoplasmic reticulum (ER) stress. Transient PERK activation is protective; however, chronic ER stress and sustained PERK activation can be detrimental to cell health. Many diseases are associated with PERK over-activation, suggestive that small molecule PERK inhibitors may provide new opportunities for treating cancer and neurodegenerative diseases, among others.

View Article and Find Full Text PDF

We recently reported the discovery of GSK2606414 (1), a selective first in class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), which inhibited PERK activation in cells and demonstrated tumor growth inhibition in a human tumor xenograft in mice. In continuation of our drug discovery program, we applied a strategy to decrease inhibitor lipophilicity as a means to improve physical properties and pharmacokinetics. This report describes our medicinal chemistry optimization culminating in the discovery of the PERK inhibitor GSK2656157 (6), which was selected for advancement to preclinical development.

View Article and Find Full Text PDF

During prion disease, an increase in misfolded prion protein (PrP) generated by prion replication leads to sustained overactivation of the branch of the unfolded protein response (UPR) that controls the initiation of protein synthesis. This results in persistent repression of translation, resulting in the loss of critical proteins that leads to synaptic failure and neuronal death. We have previously reported that localized genetic manipulation of this pathway rescues shutdown of translation and prevents neurodegeneration in a mouse model of prion disease, suggesting that pharmacological inhibition of this pathway might be of therapeutic benefit.

View Article and Find Full Text PDF

Background: Inhibition of glucose metabolism has recently become an attractive target for cancer treatment. Accordingly, since 2-deoxyglucose (2-DG) competes effectively with glucose, it has come under increasing scrutiny as a therapeutic agent. The initial response of tumor cells to 2-DG is growth inhibition, which is thought to conserve energy and consequently protect cells from its ATP-lowering effects as a glycolytic inhibitor.

View Article and Find Full Text PDF

The unfolded protein response (UPR) is a signal transduction pathway that coordinates cellular adaptation to microenvironmental stresses that include hypoxia, nutrient deprivation, and change in redox status. These stress stimuli are common in many tumors and thus targeting components of the UPR signaling is an attractive therapeutic approach. We have identified a first-in-class, small molecule inhibitor of the eukaryotic initiation factor 2-alpha kinase 3 (EIF2AK3) or PERK, one of the three mediators of UPR signaling.

View Article and Find Full Text PDF

Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) is activated in response to a variety of endoplasmic reticulum stresses implicated in numerous disease states. Evidence that PERK is implicated in tumorigenesis and cancer cell survival stimulated our search for small molecule inhibitors. Through screening and lead optimization using the human PERK crystal structure, we discovered compound 38 (GSK2606414), an orally available, potent, and selective PERK inhibitor.

View Article and Find Full Text PDF

A new class of PDF inhibitor with potent, broad spectrum antibacterial activity is described. Optimization of blood stability and potency provided compounds with improved pharmacokinetics that were suitable for in vivo experiments. Compound 5c, which has robust antibacterial activity, demonstrated efficacy in two respiratory tract infection models.

View Article and Find Full Text PDF

We have identified a series of amino-piperidine antibacterials with a good broad spectrum potency. We report the investigation of various subunits in this series and advanced studies on compound 8. Compound 8 possesses good pharmacokinetics, broad spectrum antibacterial activity and demonstrates oral efficacy in a rat lung infection model.

View Article and Find Full Text PDF

Phosphoinositide-dependent protein kinase-1(PDK1) is a master regulator of the AGC family of kinases and an integral component of the PI3K/AKT/mTOR pathway. As this pathway is among the most commonly deregulated across all cancers, a selective inhibitor of PDK1 might have utility as an anticancer agent. Herein we describe our lead optimization of compound 1 toward highly potent and selective PDK1 inhibitors via a structure-based design strategy.

View Article and Find Full Text PDF

PDK1 (3-phosphoinositide-dependent protein kinase 1) activates a group of protein kinases belonging to the AGC [PKA (protein kinase A)/PKG (protein kinase G)/PKC (protein kinase C)]-kinase family that play important roles in mediating diverse biological processes. Many cancer-driving mutations induce activation of PDK1 targets including Akt, S6K (p70 ribosomal S6 kinase) and SGK (serum- and glucocorticoid-induced protein kinase). In the present paper, we describe the small molecule GSK2334470, which inhibits PDK1 with an IC₅₀ of ~10 nM, but does not suppress the activity of 93 other protein kinases including 13 AGC-kinases most related to PDK1 at 500-fold higher concentrations.

View Article and Find Full Text PDF

Fragment screening of phosphoinositide-dependent kinase-1 (PDK1) in a biochemical kinase assay afforded hits that were characterized and prioritized based on ligand efficiency and binding interactions with PDK1 as determined by NMR. Subsequent crystallography and follow-up screening led to the discovery of aminoindazole 19, a potent leadlike PDK1 inhibitor with high ligand efficiency. Well-defined structure-activity relationships and protein crystallography provide a basis for further elaboration and optimization of 19 as a PDK1 inhibitor.

View Article and Find Full Text PDF

Novel Aurora inhibitors were identified truncating clinical candidate GSK1070916. Many of these truncated compounds retained potent activity against Aurora B with good antiproliferative activity. Mechanistic studies suggested that these compounds, depending on the substitution pattern, may or may not exert their antiproliferative effects via inhibition of Aurora B.

View Article and Find Full Text PDF

The synthesis of racemic nitrile (+/-)-9 was accomplished in four steps and 58% overall yield from the known pyrrolidinone 5. Nitrile (+/-)-9 was resolved via preparative chiral HPLC to afford optically pure nitriles (+)-9 and (-)-9, from which 3,3-dimethylprolines (+)-1 and (-)-1 and 3,3-dimethylprolinamides (+)-2 and (-)-2 could be accessed in nearly quantitative yield, without loss of optical purity. The absolute configurations of the resolved prolines and prolinamides were determined by correlation with an intermediate of known absolute stereochemistry.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionnibk0n3pt5ggge9ietli2g6u8nbne4sn): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once