Although current antiretroviral therapy can control HIV-1 replication and prevent disease progression, it is not curative. Identifying mechanisms that can lead to eradication of persistent viral reservoirs in people living with HIV-1 (PLWH) remains an outstanding challenge to achieving cure. Utilizing a phenotypic screen, we identified a novel chemical class capable of killing HIV-1 infected peripheral blood mononuclear cells.
View Article and Find Full Text PDFAs a label-free technology, mass spectrometry (MS) enables assays to be generated that monitor the conversion of substrates with native sequences to products without the requirement for substrate modifications or indirect detection methods. Although traditional liquid chromatography (LC)-MS methods are relatively slow for a high-throughput screening (HTS) paradigm, with cycle times typically ≥ 60 s per sample, the Agilent RapidFire High-Throughput Mass Spectrometry (HTMS) System, with a cycle time of 5-7 s per sample, enables rapid analysis of compound numbers compatible with HTS. By monitoring changes in mass directly, HTMS assays can be used as a triaging tool by eliminating large numbers of false positives resulting from fluorescent compound interference or from compounds interacting with hydrophobic fluorescent dyes appended to substrates.
View Article and Find Full Text PDFThe discovery of 1,3,8-triazaspiro[4.5]decane-2,4-diones (spirohydantoins) as a structural class of pan-inhibitors of the prolyl hydroxylase (PHD) family of enzymes for the treatment of anemia is described. The initial hit class, spirooxindoles, was identified through affinity selection mass spectrometry (AS-MS) and optimized for PHD2 inhibition and optimal PK/PD profile (short-acting PHDi inhibitors).
View Article and Find Full Text PDF