J Allergy Clin Immunol
November 2024
Background: Existing therapeutic strategies are challenged by long times to achieve effect and often require frequent administration. Peanut-allergic individuals would benefit from a therapeutic that provides rapid protection against accidental exposure within days of administration while carrying little risk of adverse reactions.
Objective: Guided by the repertoire of human IgE mAbs from allergic individuals, we sought to develop a treatment approach leveraging the known protective effects of allergen-specific IgG4 antibodies.
Current COVID-19 mRNA vaccines delivered intramuscularly (IM) induce effective systemic immunity, but with suboptimal immunity at mucosal sites, limiting their ability to impart sterilizing immunity. There is strong interest in rerouting immune responses induced in the periphery by parenteral vaccination to the portal entry site of respiratory viruses, such as SARS-CoV-2, by mucosal vaccination. We previously demonstrated the combination adjuvant, NE/IVT, consisting of a nanoemulsion (NE) and an RNA-based RIG-I agonist (IVT) induces potent systemic and mucosal immune responses in protein-based SARS-CoV-2 vaccines administered intranasally (IN).
View Article and Find Full Text PDFMultiple FDA-approved SARS-CoV-2 vaccines currently provide excellent protection against severe disease. Despite this, immunity can wane relatively fast, particularly in the elderly and novel viral variants capable of evading infection- and vaccination-induced immunity continue to emerge. Intranasal (IN) vaccination more effectively induces mucosal immune responses than parenteral vaccines, which would improve protection and reduce viral transmission.
View Article and Find Full Text PDFVitamin A and its biologically active metabolites, all-trans and 9-cis retinoic acid (RA), are thought to be important in generating and modulating immune function. However, RA modulates the function of many types of immune cells, and its specific role in dendritic cell (DC) activation, Ag presentation, and T cell effector function has not been fully characterized. Because RA works primarily through RA receptor (RAR)α, we examined mice with a myeloid cell-specific defect in RA signaling.
View Article and Find Full Text PDFMultiple FDA-approved SARS-CoV-2 vaccines provide excellent protection against severe disease. Despite this, immunity can wane relatively fast, particularly in the elderly and novel viral variants capable of evading infection- and vaccination-induced immunity continue to emerge. Intranasal (IN) vaccination more effectively induces mucosal immune responses than parenteral vaccines, which would improve protection and reduce viral transmission.
View Article and Find Full Text PDFFood allergy is a growing health concern worldwide. Current allergen-specific immunotherapy (AIT) approaches require frequent dosing over extended periods of time and may induce anaphylaxis due to allergen-effector cell interactions. A critical need remains to develop novel approaches that refine AIT for the treatment of food allergies.
View Article and Find Full Text PDFEpicutaneous immunotherapy (EPIT) with peanut has been demonstrated to be safe but efficacy may be limited by allergen uptake through the skin barrier. To enhance allergen uptake into the skin, the authors used peanut-coated microneedles and compared them with EPIT in a peanut allergy mouse model. Sensitized mice were treated with peanut-coated microneedles or peanut-EPIT and then challenged with peanut to determine protection.
View Article and Find Full Text PDFSeveral SARS-CoV-2 vaccines have received EUAs, but many issues remain unresolved, including duration of conferred immunity and breadth of cross-protection. Adjuvants that enhance and shape adaptive immune responses that confer broad protection against SARS-CoV-2 variants will be pivotal for long-term protection as drift variants continue to emerge. We developed an intranasal, rationally designed adjuvant integrating a nanoemulsion (NE) that activates TLRs and NLRP3 with an RNA agonist of RIG-I (IVT DI).
View Article and Find Full Text PDFFood allergy is a growing public health epidemic with few available treatments beyond allergen avoidance and rescue medications for accidental exposures. A major focus of therapeutic development for food allergies is allergen-specific immunotherapy (AIT) in which patients are exposed to increasing amounts of allergen in controlled dosing to induce desensitization or tolerance. The work of the past few decades has culminated in the recent FDA approval of a peanut product for oral AIT for peanut allergies.
View Article and Find Full Text PDFBackground: Atopic diseases are an increasing problem that involve both immediate hypersensitivity reactions mediated by IgE and unique cellular inflammation. Many forms of specific immunotherapy involve the administration of allergen to suppress allergic immune responses but are focused on IgE-mediated reactions. In contrast, the effect of allergen-specific immunotherapy on allergic inflammation is complex, not entirely consistent and not well understood.
View Article and Find Full Text PDFWe have demonstrated that intranasal immunotherapy with allergens formulated in a nanoemulsion (NE) mucosal adjuvant suppresses Th2/IgE-mediated allergic responses and protects from allergen challenge in murine food allergy models. Protection conferred by this therapy is associated with strong suppression of allergen specific Th2 cellular immunity and increased Th1 cytokines. Here we extend these studies to examine the effect of NE-allergen immunization in mice sensitized to multiple foods.
View Article and Find Full Text PDFSeveral SARS-CoV-2 vaccines have received EUAs, but many issues remain unresolved, including duration of conferred immunity and breadth of cross-protection. Adjuvants that enhance and shape adaptive immune responses that confer broad protection against SARS-CoV-2 variants will be pivotal for long-term protection. We developed an intranasal, rationally designed adjuvant integrating a nanoemulsion (NE) that activates TLRs and NLRP3 with an RNA agonist of RIG-I (IVT DI).
View Article and Find Full Text PDFCurrent influenza virus vaccines are focused on humoral immunity and are limited by the short duration of protection, narrow cross-strain efficacy, and suboptimal immunogenicity. Here, we combined two chemically and biologically distinct adjuvants, an oil-in-water nanoemulsion (NE) and RNA-based agonists of RIG-I, to determine whether the diverse mechanisms of these adjuvants could lead to improved immunogenicity and breadth of protection against the influenza virus. NE activates TLRs, stimulates immunogenic apoptosis, and enhances cellular antigen uptake, leading to a balanced T1/T2/T17 response when administered intranasally.
View Article and Find Full Text PDFBackground: Immunotherapy for food allergy requires prolonged treatment protocols and, in most cases, does not lead to durable modulation of the allergic immune response. We have demonstrated an intranasal (IN) nanoemulsion adjuvant that redirects allergen-specific Th2 responses toward Th1 and Th17 immunity, and protects from allergen challenge after only 2-4 monthly administrations. Here, we investigate the ability of this technology to provide long-term modulation of allergy in a murine model of cow's milk allergy.
View Article and Find Full Text PDFMucosal surfaces are the primary point of entry for many infectious agents and mucosal immune responses serve as the primary defense to these pathogens. In order to mount an effective mucosal immune response, it is important to induce T cell homing to mucosal surfaces. Conventional vaccine adjuvants induce strong systemic immunity but often fail to produce mucosal immunity.
View Article and Find Full Text PDFBackground: Immunotherapy for food allergies involves progressive increased exposures to food that result in desensitization to food allergens in some subjects but not tolerance to the food. Therefore new approaches to suppress allergic immunity to food are necessary. Previously, we demonstrated that intranasal immunization with a nanoemulsion (NE) adjuvant induces robust mucosal antibody and T17-polarized immunity, as well as systemic T1-biased cellular immunity with suppression of pre-existing T2-biased immunity.
View Article and Find Full Text PDFAims/hypothesis: Mounting evidence indicates that Roux-en-Y gastric bypass (RYGB) ameliorates type 2 diabetes, but randomised trials comparing surgical vs nonsurgical care are needed. With a parallel-group randomised controlled trial (RCT), we compared RYGB vs an intensive lifestyle and medical intervention (ILMI) for type 2 diabetes, including among patients with a BMI <35 kg/m(2).
Methods: By use of a shared decision-making recruitment strategy targeting the entire at-risk population within an integrated community healthcare system, we screened 1,808 adults meeting inclusion criteria (age 25-64, with type 2 diabetes and a BMI 30-45 kg/m(2)).
Respiratory Syncytial Virus is a leading cause of bronchiolitis and pneumonia in infants, the elderly and individuals with compromised immune systems. Despite decades of research, there is currently no available vaccine for RSV. Our group has previously demonstrated that intranasal immunization of mice with RSV inactivated by and adjuvanted with W805EC nanoemulsion elicits robust humoral and cellular immune responses, resulting in protection against RSV infection.
View Article and Find Full Text PDFBackground: Randomized trials of bariatric surgery versus lifestyle treatment likely enroll highly motivated patients, which may limit the interpretation and generalizability of study findings. The objective of this study was to assess the feasibility of a population-based shared decision-making (SDM) approach to recruitment for a trial comparing laparoscopic Roux-en-Y gastric bypass surgery with intensive lifestyle intervention among adults with mild to moderate obesity and type 2 diabetes.
Methods: Adult members with a body mass index (BMI) between 30 and 45 kg/m(2) taking diabetes medications were identified in electronic databases and underwent a multiphase screening process.
While the nasal mucosa is a potentially useful site for human immunization, toxin-based nasal adjuvants are generally unsafe and less effective in humans. Safe mucosal adjuvants that activate protective immunity via mucosal administration are highly dependent on barrier antigen sampling by epithelial and DCs. Here, we demonstrate that protein antigens formulated in unique oil-in-water nanoemulsions (NEs) result in distinctive transcellular antigen uptake in ciliated nasal epithelial cells, leading to delivery into nasal associated lymphoid tissue.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
October 2010
Highly ordered sphingolipid-enriched lipid raft microdomains (LRMs) within plasma membranes purportedly function as specialized signaling platforms. Leukocyte migration is believed to entail LRM redistribution, but progress in studying LRMs in situ during cell movement has been limited. By using an improved method for imaging the spectral shift of the environmentally sensitive probe, laurdan (expressed as a generalized polarization function), the plasma membrane order (i.
View Article and Find Full Text PDFBackground: Hepatitis B virus infection remains an important global health concern despite the availability of safe and effective prophylactic vaccines. Limitations to these vaccines include requirement for refrigeration and three immunizations thereby restricting use in the developing world. A new nasal hepatitis B vaccine composed of recombinant hepatitis B surface antigen (HBsAg) in a novel nanoemulsion (NE) adjuvant (HBsAg-NE) could be effective with fewer administrations.
View Article and Find Full Text PDFEpidemiological and experimental data suggest that both robust neutralizing antibodies and potent cellular responses play important roles in controlling primary HIV-1 infection. In this study we have investigated the induction of systemic and mucosal immune responses to HIV gp120 monomer immunogen administered intranasally in a novel, oil-in-water nanoemulsion (NE) adjuvant. Mice and guinea pigs intranasally immunized by the application of recombinant HIV gp120 antigen mixed in NE demonstrated robust serum anti-gp120 IgG, as well as bronchial, vaginal, and serum anti-gp120 IgA in mice.
View Article and Find Full Text PDFLive-virus vaccines for smallpox are effective but have risks that are no longer acceptable for routine use in populations at minimal risk of infection. We have developed a mucosal, killed-vaccinia virus (VV) vaccine based on antimicrobial nanoemulsion (NE) of soybean oil and detergent. Incubation of VV with 10% NE for at least 60 min causes the complete disruption and inactivation of VV.
View Article and Find Full Text PDF