Publications by authors named "Jeffrey L Ram"

In this study, the biodiversity of Chironomidae was investigated in Palmer Park Pond A, an urban vernal pond in Detroit, Michigan, USA. This study is developed as part of our ongoing Public Environmental Outreach Program at the Detroit Exploration and Nature Center in Palmer Park. Twenty-one Chironomidae species were discovered in and on the adjacent riparian vegetation of this pond using molecular and morphological methods.

View Article and Find Full Text PDF

Wastewater-based epidemiology (WBE) can be used as a part of a long-term strategy for detecting and responding rapidly to new outbreaks of infectious disease in the community. However, wastewater collected by grab samples may miss marker presence, and composite auto-sampling throughout a day is technically challenging and costly. Tampon swabs can be used as passive collectors of wastewater markers over hours, but recovery of the captured markers is a challenge.

View Article and Find Full Text PDF

The calcium-sensing receptor (CaSR), abundantly expressed in the parathyroid gland and kidney, plays a central role in calcium homeostasis. In addition, CaSR exerts multimodal roles, including inflammation, muscle contraction, and bone remodeling, in other organs and tissues. The diverse functions of CaSR are mediated by many endogenous and exogenous ligands, including calcium, amino acids, glutathione, cinacalcet, and etelcalcetide, that have distinct binding sites in CaSR.

View Article and Find Full Text PDF

We describe a new genus Alaskacladius gen. nov., based on the adult stages collected from Alaska, USA, and British Columbia, Canada.

View Article and Find Full Text PDF
Article Synopsis
  • * A workshop held in April 2023, funded by the National Science Foundation, focused on identifying the current challenges and research gaps in bacterial wastewater surveillance, leading to discussions about methods, data standardization, and the importance of correlating wastewater data with human disease.
  • * To enhance bacterial monitoring in wastewater, experts suggested the need for better data reporting standards, method optimization, and a deeper understanding of bacterial shedding patterns to link wastewater findings to infection rates in communities.
View Article and Find Full Text PDF

The public health emergency caused by the COVID-19 pandemic stimulated stakeholders from diverse disciplines and institutions to establish new collaborations to produce informed public health responses to the disease. Wastewater-based epidemiology for COVID-19 grew quickly during the pandemic and required the rapid implementation of such collaborations. The objective of this article is to describe the challenges and results of new relationships developed in Detroit, MI, USA among a medical school and an engineering college at an academic institution (Wayne State University), the local health department (Detroit Health Department), and an environmental services company (LimnoTech) to utilize markers of the COVID-19 virus, SARS-CoV-2, in wastewater for the goal of managing COVID-19 outbreaks.

View Article and Find Full Text PDF

Engineering microfluidic devices relies on the ability to manufacture sub-100 micrometer fluidic channels. Conventional lithographic methods provide high resolution but require costly exposure tools and outsourcing of masks, which extends the turnaround time to several days. The desire to accelerate design/test cycles has motivated the rapid prototyping of microfluidic channels; however, many of these methods (e.

View Article and Find Full Text PDF

Early detection of the COVID-19 virus, SARS-CoV-2, is key to mitigating the spread of new outbreaks. Data from individual testing is increasingly difficult to obtain as people conduct non-reported home tests, defer tests due to logistics or attitudes, or ignore testing altogether. Wastewater based epidemiology is an alternative method for surveilling a community while maintaining individual anonymity; however, a problem is that SARS-CoV-2 markers in wastewater vary throughout the day.

View Article and Find Full Text PDF

Understanding the diversity of bacteria and E.coli levels at beaches is important for managing health risks. This study compared temporal changes of the bacterial communities of Belle Isle Beach (Detroit, MI) and Sand Point Beach (Windsor, ONT), both located near the Lake St.

View Article and Find Full Text PDF

Wastewater based epidemiology (WBE) has emerged as a strategy to identify, locate, and manage outbreaks of COVID-19, and thereby possibly prevent surges in cases, which overwhelm local to global health care networks. The WBE process is based on assaying municipal wastewater for molecular markers of the SARS-CoV-2 virus. Standard processes for purifying viral RNA from municipal wastewater are often time-consuming and require the handling of large quantities of wastewater, negatively affecting throughput, timely reporting, and safety.

View Article and Find Full Text PDF

Extracellular glutathione (GSH) and oxidized glutathione (GSSG) can modulate the function of the extracellular calcium sensing receptor (CaSR). The CaSR has a binding pocket in the extracellular domain of CaSR large enough to bind either GSH or GSSG, as well as the naturally occurring oxidized derivative L-cysteine glutathione disulfide (CySSG) and the compound cysteinyl glutathione (CysGSH). Modeling the binding energies (ΔG) of CySSG and CysGSH to CaSR reveals that both cysteine derivatives may have greater affinities for CaSR than either GSH or GSSG.

View Article and Find Full Text PDF

Water mites are diverse aquatic invertebrates that provide potentially important ecosystem and economic services as bioindicators and mosquito biocontrol; however, little is known about water mite digestive physiology, including their diet in nature. Water mites, much like their spider relatives, liquefy their prey upon consumption. This results in the absence of morphologically identifiable prey in water mite mid-gut.

View Article and Find Full Text PDF

Wastewater surveillance for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging approach to help identify the risk of a coronavirus disease (COVID-19) outbreak. This tool can contribute to public health surveillance at both community (wastewater treatment system) and institutional (e.g.

View Article and Find Full Text PDF

Background: Wastewater surveillance for SARS-CoV-2 is an emerging approach to help identify the risk of a COVID-19 outbreak. This tool can contribute to public health surveillance at both community (wastewater treatment system) and institutional (e.g.

View Article and Find Full Text PDF

Scientists have observed that molecular markers for COVID-19 can be detected in wastewater of infected communities both during an outbreak and, in some cases, before the first case is confirmed. The Centers for Disease Control and Prevention and other government entities are considering whether to add community surveillance through wastewater monitoring to assist in tracking disease prevalence and guiding public health responses to the COVID-19 pandemic. This scientific breakthrough may lead to many useful potential applications for tracking disease, intensifying testing, initiating social distancing or quarantines, and even lifting restrictions once a cessation of infection is detected and confirmed.

View Article and Find Full Text PDF

Water mites are important constituents of aquatic ecosystems, but their biodiversity is poorly understood. The goal of this study was to improve knowledge of water mite assemblages in the Detroit River through combined use of morphological and cytochrome oxidase I (COI) DNA barcode data and to elucidate seasonal water mite diversity. The diversity of water mites collected from Blue Heron Lagoon at Belle Isle, an island in the Detroit River, is described.

View Article and Find Full Text PDF

Following decades of ecologic and economic impacts from a growing list of nonindigenous and invasive species, government and management entities are committing to systematic early- detection monitoring (EDM). This has reinvigorated investment in the science underpinning such monitoring, as well as the need to convey that science in practical terms to those tasked with EDM implementation. Using the context of nonindigenous species in the North American Great Lakes, this article summarizes the current scientific tools and knowledge - including limitations, research needs, and likely future developments - relevant to various aspects of planning and conducting comprehensive EDM.

View Article and Find Full Text PDF

Background: The equilibrium of oral microbiome may be altered by environmental factors, including cigarette smoking. Several recent studies also suggest that oral pathogens causing periodontal disease, such as , are involved in pathogenesis of colorectal cancer.

Methods: For this study oral rinse DNA samples from 190 participants in a population-based case-control study for colorectal cancer were used to amplify a V3-V4 region of bacterial 16S rRNA gene.

View Article and Find Full Text PDF

Background: Despite many potential effects of the oral microbiome on oral and systemic health, scant information is available regarding the associations between diet and the oral microbiome.

Methods: Oral rinse DNA samples from 182 participants in a population-based case-control study for colorectal cancer were used to amplify a V3-V4 region of bacterial 16S rRNA gene. The amplicons were sequenced using Illumina MiSeq paired end chemistry on 2 runs, yielding approximately 33 million filtered reads that were assigned to bacterial classes.

View Article and Find Full Text PDF

In the Laurentian Great Lakes, specimens of have been reported as since its invasion in the late 1950s. During an intensive collection of aquatic invertebrates for morphological and molecular identification in Western Lake Erie in 2012-2013, several specimens of were collected. Analysis of these specimens identified them as the recently described species Alekseev and Souissi 2011.

View Article and Find Full Text PDF

Invertebrate model systems, such as nematodes and fruit flies, have provided valuable information about the genetics and cellular biology involved in aging. However, limitations of these simple, genetically tractable organisms suggest the need for other model systems, some of them invertebrate, to facilitate further advances in the understanding of mechanisms of aging and longevity in mammals, including humans. This paper introduces 10 review articles about the use of invertebrate model systems for the study of aging by authors who participated in an 'NIA-NIH symposium on aging in invertebrate model systems' at the 2013 International Congress for Invertebrate Reproduction and Development.

View Article and Find Full Text PDF

The impact of NaOH as a ballast water treatment (BWT) on microbial community diversity was assessed using the 16S rRNA gene based Ion Torrent sequencing with its new 400 base chemistry. Ballast water samples from a Great Lakes ship were collected from the intake and discharge of both control and NaOH (pH 12) treated tanks and were analyzed in duplicates. One set of duplicates was treated with the membrane-impermeable DNA cross-linking reagent propidium mono-azide (PMA) prior to PCR amplification to differentiate between live and dead microorganisms.

View Article and Find Full Text PDF

The effectiveness of zosteric acid, a natural antifoulant from the marine seagrass Zostera marina, in preventing the attachment of quagga mussels, a biofouling bivalve, was investigated. Animals were exposed to water containing zosteric acid ranging from 0 to 1000 ppm, and their attachment to the container glass walls was tracked with time. 500 ppm zosteric acid was not effective at detaching animals that had already attached, but was able to prevent the attachment of most unattached animals for two days.

View Article and Find Full Text PDF

Proteins use conserved binding motifs associated with relatively unconserved flexible amino acid sequences as mobile tethers for interacting molecules, as exemplified by C-terminal sequences of bacterial chemotaxis receptors. The FLEXTAIL bioinformatics pipeline predicts flexible tethers and their binding motifs based on the properties of flexibility and sequence conservation. In four groups of bacterial genomes, the algorithm identified > 100 putative binding domains, including verifying the known bacterial chemotaxis receptor-- NWETF binding motif.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: