Publications by authors named "Jeffrey L Price"

The sensitivity of the eye at night would lead to complete saturation of the eye during the day. Therefore, the sensitivity of the eye must be down-regulated during the day to maintain visual acuity. In the Drosophila eye, the opening of TRP and TRPL channels leads to an influx of Ca that triggers down-regulation of further responses to light, including the movement of the TRPL channel and Gα proteins out of signaling complexes found in actin-mediated microvillar extensions of the photoreceptor cells (the rhabdomere).

View Article and Find Full Text PDF

BRIDE OF DOUBLETIME (BDBT) interacts with the circadian kinase DOUBLETIME (DBT) and accumulates in eye foci during the dark of a light:dark cycle. BDBT foci are shown here to be broadly expressed in constant dark and low in constant light. Analysis of circadian photoreceptor and visual photoreceptor mutants showed that disappearance of eye BDBT foci requires both the CRYPTOCHROME and the RHODOPSIN-1 pathways.

View Article and Find Full Text PDF

Drosophila Double-time (DBT) phosphorylates the circadian protein Period (PER). The period-altering mutation , identified in hamster casein kinase I (CKIε) and created in Drosophila DBT, has been shown to shorten the circadian period in flies, as it does in hamsters. Since CKI often phosphorylates downstream of previously phosphorylated residues and the amino acid binds a negatively charged ion in X-ray crystal structures, this amino acid has been suggested to contribute to a phosphate recognition site for the substrate.

View Article and Find Full Text PDF

In the early 1980s Jeff Hall and Michael Rosbash at Brandeis University and Mike Young at Rockefeller University set out to isolate the () gene, which was recovered in a revolutionary genetic screen by Ron Konopka and Seymour Benzer for mutants that altered circadian behavioral rhythms. Over the next 15 years the Hall, Rosbash and Young labs made a series of groundbreaking discoveries that defined the molecular timekeeping mechanism and formed the basis for them being awarded the 2017 Nobel Prize in Physiology or Medicine. Here the authors recount their experiences as post-docs in the Hall, Rosbash and Young labs from the mid-1980s to the mid-1990s, and provide a perspective of how basic research conducted on a simple model system during that era profoundly influenced the direction of the clocks field and established novel approaches that are now standard operating procedure for studying complex behavior.

View Article and Find Full Text PDF

Circadian rhythm is a ubiquitous phenomenon in many organisms ranging from prokaryotes to eukaryotes. During more than four decades, the intrinsic and exogenous regulations of circadian rhythm have been studied. This review summarizes the core endogenous oscillation in and then focuses on the neuropeptides, neurotransmitters and hormones that mediate its outputs and integration in and the links between several of these (pigment dispersing factor (PDF) and insulin-like peptides) and neurodegenerative disease.

View Article and Find Full Text PDF

Deletion of proprotein convertase Mbtps1 in bone osteocytes leads to a significant postnatal increase in skeletal muscle size and contractile function, while causing only a 25% increase in stiffness in long bones. Concerns about leakiness in skeletal muscle were discounted since Cre recombinase expression does not account for our findings, and, Mbtps1 protein and mRNA is not deleted. Interestingly, the response of normal skeletal muscle to exercise and the regenerative response of skeletal muscle to the deletion of Mbtps1 in bone share some key regulatory features including a preference for slow twitch muscle fibers.

View Article and Find Full Text PDF

Mouse models of neurodegenerative diseases such as Alzheimer's disease (AD) are important for understanding how pathological signaling cascades change neural circuitry and with time interrupt cognitive function. Here, we introduce a non-genetic preclinical model for aging and show that it exhibits cleaved tau protein, active caspases and neurofibrillary tangles, hallmarks of AD, causing behavioral deficits measuring cognitive impairment. To our knowledge this is the first report of a non-transgenic, non-interventional mouse model displaying structural, functional and molecular aging deficits associated with AD and other tauopathies in humans with potentially high impact on both new basic research into pathogenic mechanisms and new translational research efforts.

View Article and Find Full Text PDF

Doubletime (DBT) has an essential circadian role in Drosophila melanogaster because it phosphorylates Period (PER). To determine if DBT antagonism can produce distinct effects in the cytosol and nucleus, forms of a dominant negative DBT(K/R) with these 2 alternative localizations were produced. DBT has a putative nuclear localization signal (NLS), and mutation of this signal confers cytosolic localization of DBT in the lateral neurons of Drosophila clock cells in the brain.

View Article and Find Full Text PDF

While circadian dysfunction and neurodegeneration are correlated, the mechanism for this is not understood. It is not known if age-dependent circadian dysfunction leads to neurodegeneration or vice-versa, and the proteins that mediate the effect remain unidentified. Here, we show that the knock-down of a regulator (spag) of the circadian kinase Dbt in circadian cells lowers Dbt levels abnormally, lengthens circadian rhythms and causes expression of activated initiator caspase (Dronc) in the optic lobes during the middle of the day or after light pulses at night.

View Article and Find Full Text PDF

Drosophila DBT and vertebrate CKIε/δ phosphorylate the period protein (PER) to produce circadian rhythms. While the C termini of these orthologs are not conserved in amino acid sequence, they inhibit activity and become autophosphorylated in the fly and vertebrate kinases. Here, sites of C-terminal autophosphorylation were identified by mass spectrometry and analysis of DBT truncations.

View Article and Find Full Text PDF

The circadian clock mechanism in organisms as diverse as cyanobacteria and humans involves both transcriptional and posttranslational regulation of key clock components. One of the roles for the posttranslational regulation is to time the degradation of the targeted clock proteins, so that their oscillation profiles are out of phase with respect to those of the mRNAs from which they are translated. In Drosophila, the circadian transcriptional regulator PERIOD (PER) is targeted for degradation by a kinase (DOUBLETIME or DBT) orthologous to mammalian kinases (CKIɛ and CKIδ) that also target mammalian PER.

View Article and Find Full Text PDF

The kinase DOUBLETIME is a master regulator of the Drosophila circadian clock, yet the mechanisms regulating its activity remain unclear. A proteomic analysis of DOUBLETIME interactors led to the identification of an unstudied protein designated CG17282. RNAi-mediated knockdown of CG17282 produced behavioral arrhythmicity and long periods and high levels of hypophosphorylated nuclear PERIOD and phosphorylated DOUBLETIME.

View Article and Find Full Text PDF

Sleep is important for maintenance of normal physiology in animals. In mammals, neuropeptide Y (NPY), a homolog of Drosophila neuropeptide F (NPF), is involved in sleep regulation, with different effects in human and rat. However, the function of NPF on sleep in Drosophila melanogaster has not yet been described.

View Article and Find Full Text PDF

Circadian clocks keep time via gene expression feedback loops that are controlled by time-of-day-specific changes in the synthesis, activity, and degradation of transcription factors. Within the Drosophila melanogaster circadian clock, DOUBLETIME (DBT) kinase is necessary for the phosphorylation of PERIOD (PER), a transcriptional repressor, and CLOCK (CLK), a transcriptional activator, as CLK-dependent transcription is being repressed. PER- and DBT-containing protein complexes feed back to repress CLK-dependent transcription, but how DBT promotes PER and CLK phosphorylation and how PER and CLK phosphorylation contributes to transcriptional repression have not been defined.

View Article and Find Full Text PDF

Mutations lowering the kinase activity of Drosophila Doubletime (DBT) and vertebrate casein kinase Iepsilon/delta (CKIepsilon/delta) produce long-period, short-period, and arrhythmic circadian rhythms. Since most ckI short-period mutants have been isolated in mammals, while the long-period mutants have been found mostly in Drosophila, lowered kinase activity may have opposite consequences in flies and vertebrates, because of differences between the kinases or their circadian mechanisms. However, the results of this article establish that the Drosophila dbt mutations have similar effects on period (PER) protein phosphorylation by the fly and vertebrate enzymes in vitro and that Drosophila DBT has an inhibitory C-terminal domain and exhibits autophosphorylation, as does vertebrate CKIepsilon/delta.

View Article and Find Full Text PDF

Circadian rhythms are produced by a biological clock that is synchronized (or entrained) by cycles of light and temperature. In Drosophila, light triggers the interaction of the photoreceptor cryptochrome (CRY) with the circadian clock protein timeless (TIM). The absence of this interaction in cryb mutants eliminates this entrainment mechanism.

View Article and Find Full Text PDF

A mutation (K38R) which specifically eliminates kinase activity was created in the Drosophila melanogaster ckI gene (doubletime [dbt]). In vitro, DBT protein carrying the K38R mutation (DBT(K/R)) interacted with Period protein (PER) but lacked kinase activity. In cell culture and in flies, DBT(K/R) antagonized the phosphorylation and degradation of PER, and it damped the oscillation of PER in vivo.

View Article and Find Full Text PDF

This study examines the developmental expression of GABAB receptor subunits (GABAB(1a), GABAB(1b), GABAB(2)) in the pituitary intermediate lobe using in situ hybridization, reverse transcriptase-polymerase chain reaction, immunohistochemistry, and Western blots. Receptor functionality was studied by baclofen-stimulated GTPgammaS binding. In the adult rat pituitary all three transcripts were detected in melanotropes, but not in glia, of the intermediate lobe.

View Article and Find Full Text PDF

The frog (Xenopus laevis) retina has been an important model for the analysis of retinal circadian rhythms. In this paper, several isoforms of X. laevis casein kinase I (CKI) were analyzed to address whether they are involved in the phosphorylation and degradation of period protein (PER), as they are in the circadian oscillators of other species.

View Article and Find Full Text PDF

The isolation and analysis of mutant flies (Drosophila melanogaster) with altered circadian rhythms have led to an understanding of circadian rhythms at the molecular level. This molecular mechanism elucidated in fruit flies is similar to the mechanism of the human circadian clock, which confers 24-h rhythmicity to our sleep/wake behavior, as well as to many other aspects of our cellular and organismal physiology. In fruit flies, genes can be mutated to abolish circadian rhythms (i.

View Article and Find Full Text PDF

In both mammals and fruit flies, casein kinase I has been shown to regulate the circadian phosphorylation of the period protein (PER). This phosphorylation regulates the timing of PER's nuclear accumulation and decline, and it is necessary for the generation of circadian rhythms. In Drosophila melanogaster, mutations affecting a casein kinase I (CKI) ortholog called doubletime (dbt) can produce short or long periods.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2il26ldoompl41id92ev6kkfckalfkvv): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once