Publications by authors named "Jeffrey L Mason"

To ensure rapid and efficient impulse conduction, myelinated axons establish and maintain specific protein domains. For instance, sodium (Na+) channels accumulate in the node of Ranvier; potassium (K+) channels aggregate in the juxtaparanode and neurexin/caspr/paranodin clusters in the paranode. Our understanding of the mechanisms that control the initial clustering of these proteins is limited and less is known about domain maintenance.

View Article and Find Full Text PDF

The transcription factor ATF5 is expressed in cells of the embryonic and neonatal ventricular zone/subventricular zone (VZ/SVZ), and must be down-regulated for their differentiation into neurons and astrocytes. Here, we show that ATF5 plays a major role in directing oligodendrocyte development. ATF5 is expressed by oligodendrocyte precursors but is absent from mature oligodendroglia.

View Article and Find Full Text PDF

The mechanisms that regulate neural progenitor cell differentiation are primarily unknown. The transcription factor activating transcription factor 5 (ATF5) is expressed in neural progenitors of developing brain but is absent from mature astrocytes and neurons. Here, we demonstrate that ATF5 regulates the conversion of ventricular zone (VZ) and subventricular zone (SVZ) neural progenitors into astrocytes.

View Article and Find Full Text PDF

To understand mechanisms that may underlie the progression of a demyelinated lesion to a chronic state, we have used the cuprizone model of chronic demyelination. In this study, we investigated the fate of oligodendrocytes during the progression of a demyelinating lesion to a chronic state and determined whether transplanted adult oligodendrocyte progenitors could remyelinate the chronically demyelinated axons. Although there is rapid regeneration of the oligodendrocyte population following an acute lesion, most of these newly regenerated cells undergo apoptosis if mice remain on a cuprizone diet.

View Article and Find Full Text PDF

We examined the role of IGF signaling in the remyelination process by disrupting the gene encoding the type 1 IGF receptor (IGF1R) specifically in the mouse brain by Cre-mediated recombination and then exposing these mutants and normal siblings to cuprizone. This neurotoxicant induces a demyelinating lesion in the corpus callosum that is reversible on termination of the insult. Acute demyelination and oligodendrocyte depletion were the same in mutants and controls, but the mutants did not remyelinate adequately.

View Article and Find Full Text PDF