Soil microbiomes are heterogeneous, complex microbial communities. Metagenomic analysis is generating vast amounts of data, creating immense challenges in sequence assembly and analysis. Although advances in technology have resulted in the ability to easily collect large amounts of sequence data, soil samples containing thousands of unique taxa are often poorly characterized.
View Article and Find Full Text PDFTerrestrial ecosystems are an important carbon store, and this carbon is vulnerable to microbial degradation with climate warming. After 30 years of experimental warming, carbon stocks in a temperate mixed deciduous forest were observed to be reduced by 30% in the heated plots relative to the controls. In addition, soil respiration was seasonal, as was the warming treatment effect.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2020
The genus belongs to the family However, many species with the genus name are found in different families and even crossing into a different phylum. Motivated by recently completed genome sequences, we propose the reclassification of two separate clades that include misclassified species which phylogenetically lie within the family , known for being benign members of gut microbiomes and for their plant-degrading capabilities. We use several phylogenetic and phylogenomic perspectives as well as phenotypic comparisons to gain insight into the evolutionary history of these taxa.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
February 2017
An anaerobic, saccharolytic, spore-forming, butyrate-producing bacterium, strain KNHs209T, was isolated from a switchgrass microcosm seeded with forest soil. Cells were highly motile rods, often forming long filamentous chains which were easily observed moving under the microscope. Its closest phylogenetic relative was Eisenbergiella tayi (16S rRNA gene sequence identity 94.
View Article and Find Full Text PDFAdaptation by natural selection depends on the rates, effects and interactions of many mutations, making it difficult to determine what proportion of mutations in an evolving lineage are beneficial. Here we analysed 264 complete genomes from 12 Escherichia coli populations to characterize their dynamics over 50,000 generations. The populations that retained the ancestral mutation rate support a model in which most fixed mutations are beneficial, the fraction of beneficial mutations declines as fitness rises, and neutral mutations accumulate at a constant rate.
View Article and Find Full Text PDFClostridium phytofermentans was isolated from forest soil and is distinguished by its capacity to directly ferment plant cell wall polysaccharides into ethanol as the primary product, suggesting that it possesses unusual catabolic pathways. The objective of the present study was to understand the molecular mechanisms of biomass conversion to ethanol in a single organism, Clostridium phytofermentans, by analyzing its complete genome and transcriptome during growth on plant carbohydrates. The saccharolytic versatility of C.
View Article and Find Full Text PDFSoil microbes are major drivers of soil carbon cycling, yet we lack an understanding of how climate warming will affect microbial communities. Three ongoing field studies at the Harvard Forest Long-term Ecological Research (LTER) site (Petersham, MA) have warmed soils 5°C above ambient temperatures for 5, 8, and 20 years. We used this chronosequence to test the hypothesis that soil microbial communities have changed in response to chronic warming.
View Article and Find Full Text PDFClostridium indolis DSM 755(T) is a bacterium commonly found in soils and the feces of birds and mammals. Despite its prevalence, little is known about the ecology or physiology of this species. However, close relatives, C.
View Article and Find Full Text PDFThe smallest genomes of any photosynthetic organisms are found in a group of free-living marine cyanobacteria, Prochlorococcus. To determine the underlying evolutionary mechanisms, we developed a new method to reconstruct the steps leading to the Prochlorococcus genome reduction using 12 Prochlorococcus and 6 marine Synechococcus genomes. Our results reveal that small genome sizes within Prochlorococcus were largely determined shortly after the split of Prochlorococcus and Synechococcus (an early big shrink) and thus for the first time decouple the genome reduction from Prochlorococcus diversification.
View Article and Find Full Text PDFBackground: The complexity of plant cell walls creates many challenges for microbial decomposition. Clostridium phytofermentans, an anaerobic bacterium isolated from forest soil, directly breaks down and utilizes many plant cell wall carbohydrates. The objective of this research is to understand constraints on rates of plant decomposition by Clostridium phytofermentans and identify molecular mechanisms that may overcome these limitations.
View Article and Find Full Text PDFLaminitis is a chronic, crippling disease triggered by the sudden influx of dietary starch. Starch reaches the hindgut resulting in enrichment of lactic acid bacteria, lactate accumulation, and acidification of the gut contents. Bacterial products enter the bloodstream and precipitate systemic inflammation.
View Article and Find Full Text PDFBackground: Clostridium phytofermentans, an anaerobic soil bacterium, can directly convert plant biomass into biofuels. The genome of C. phytofermentans contains three loci with genes encoding shell proteins of bacterial microcompartments (BMC), organelles composed entirely of proteins.
View Article and Find Full Text PDFThe marine cyanobacterium Prochlorococcus MED4 has the smallest sequenced genome of any photosynthetic organism. Prochlorococcus MED4 shares many genomic characteristics with chloroplasts and bacterial endosymbionts, including a reduced coding capacity, missing DNA repair genes, a minimal transcriptional regulatory network, a marked AT% bias, and an accelerated rate of amino acid changes. In chloroplasts and endosymbionts, these molecular phenotypes appear to be symptomatic of a relative increase in genetic drift due to restrictions on effective population size in the host environment.
View Article and Find Full Text PDFEstrogen and progestins are essential for mammary growth and differentiation but also enhance the activity of the p53 tumor suppressor protein in the mammary epithelium. However, the pathways by which these hormones regulate p53 activity are unknown. Microarrays were used to profile the transcriptional changes within the mammary gland after administration of either vehicle, 17beta-estradiol (E), or progesterone (P) individually and combined (EP).
View Article and Find Full Text PDFBackground: SoxR and SoxS constitute an intracellular signal response system that rapidly detects changes in superoxide levels and modulates gene expression in E. coli. A time series microarray design was used to identify co-regulated SoxRS-dependent and independent genes modulated by superoxide minutes after exposure to stress.
View Article and Find Full Text PDFCurrently the shikimate pathway is reported as a metabolic feature of prokaryotes, ascomycete fungi, apicomplexans, and plants. The plant shikimate pathway enzymes have similarities to prokaryote homologues and are largely active in chloroplasts, suggesting ancestry from the plastid progenitor genome. Toxoplasma gondii, which also possesses an alga-derived plastid organelle, encodes a shikimate pathway with similarities to ascomycete genes, including a five-enzyme pentafunctional arom.
View Article and Find Full Text PDFRobustness is the invariance of phenotypes in the face of perturbation. The robustness of phenotypes appears at various levels of biological organization, including gene expression, protein folding, metabolic flux, physiological homeostasis, development, and even organismal fitness. The mechanisms underlying robustness are diverse, ranging from thermodynamic stability at the RNA and protein level to behavior at the organismal level.
View Article and Find Full Text PDFAn unusually high proportion of proteins encoded in Chlamydia genomes are most similar to plant proteins, leading to proposals that a Chlamydia ancestor obtained genes from a plant or plant-like host organism by horizontal gene transfer. However, during an analysis of bacterial-eukaryotic protein similarities, we found that the vast majority of plant-like sequences in Chlamydia are most similar to plant proteins that are targeted to the chloroplast, an organelle derived from a cyanobacterium. We present further evidence suggesting that plant-like genes in Chlamydia, and other Chlamydiaceae, are likely a reflection of an unappreciated evolutionary relationship between the Chlamydiaceae and the cyanobacteria-chloroplast lineage.
View Article and Find Full Text PDF