Publications by authors named "Jeffrey Kurz"

Therapeutics based on short interfering RNAs (siRNAs) delivered to hepatocytes have been approved, but new delivery solutions are needed to target additional organs. Here we show that conjugation of 2'-O-hexadecyl (C16) to siRNAs enables safe, potent and durable silencing in the central nervous system (CNS), eye and lung in rodents and non-human primates with broad cell type specificity. We show that intrathecally or intracerebroventricularly delivered C16-siRNAs were active across CNS regions and cell types, with sustained RNA interference (RNAi) activity for at least 3 months.

View Article and Find Full Text PDF
Article Synopsis
  • GalNAc ligands are critical for the targeted delivery of oligonucleotide therapeutics like siRNAs to liver cells, leading to successful treatments such as GIVLAARI, OXLUMO, and Leqvio.
  • Despite progress, there's limited published data on the drug metabolism and pharmacokinetic properties of GalNAc-siRNA, prompting a review to summarize current understanding.
  • Research shows that GalNAc-conjugated siRNAs rapidly distribute to the liver post-injection, with liver pharmacokinetics being better indicators of drug effectiveness than blood levels, and these properties are consistent and predictable across different species.
View Article and Find Full Text PDF

Implementation of in vitro assays that correlate with in vivo human pharmacokinetics (PK) would provide desirable preclinical tools for the early selection of therapeutic monoclonal antibody (mAb) candidates with minimal non-target-related PK risk. Use of these tools minimizes the likelihood that mAbs with unfavorable PK would be advanced into costly preclinical and clinical development. In total, 42 mAbs varying in isotype and soluble versus membrane targets were tested in in vitro and in vivo studies.

View Article and Find Full Text PDF

Therapeutic antibodies continue to develop as an emerging drug class, with a need for preclinical tools to better predict in vivo characteristics. Transgenic mice expressing human neonatal Fc receptor (hFcRn) have potential as a preclinical pharmacokinetic (PK) model to project human PK of monoclonal antibodies (mAbs). Using a panel of 27 mAbs with a broad PK range, we sought to characterize and establish utility of this preclinical animal model and provide guidance for its application in drug development of mAbs.

View Article and Find Full Text PDF

Hemophilia A and B are caused by deficiencies in coagulation factor VIII (FVIII) and factor IX, respectively, resulting in deficient blood coagulation via the intrinsic pathway. The extrinsic coagulation pathway, mediated by factor VIIa and tissue factor (TF), remains intact but is negatively regulated by tissue factor pathway inhibitor (TFPI), which inhibits both factor VIIa and its product, factor Xa. This inhibition limits clot initiation via the extrinsic pathway, whereas factor deficiency in hemophilia limits clot propagation via the intrinsic pathway.

View Article and Find Full Text PDF

Adhesive interactions between circulating sickle red blood cells (RBCs), leukocytes, and endothelial cells are major pathophysiologic events in sickle cell disease (SCD). To develop new therapeutics that efficiently inhibit adhesive interactions, we generated an anti-P-selectin aptamer and examined its effects on cell adhesion using knockout-transgenic SCD model mice. Aptamers, single-stranded oligonucleotides that bind molecular targets with high affinity and specificity, are emerging as new therapeutics for cardiovascular and hematologic disorders.

View Article and Find Full Text PDF

Bacterial ribonuclease P (RNase P) catalyzes the cleavage of 5' leader sequences from precursor tRNAs (pre-tRNAs). Previously, all known substrate nucleotide specificities in this system are derived from RNA-RNA interactions with the RNase P RNA subunit. Here, we demonstrate that pre-tRNA binding affinities for Bacillus subtilis and Escherichia coli RNase P are enhanced by sequence-specific contacts between the fourth pre-tRNA nucleotide on the 5' side of the cleavage site (N(-4)) and the RNase P protein (P protein) subunit.

View Article and Find Full Text PDF

Inhibition of platelet derived growth factor (PDGF) can increase the efficacy of other cancer therapeutics, but the cellular mechanism is incompletely understood. We examined the cellular effects on tumor vasculature of a novel DNA oligonucleotide aptamer (AX102) that selectively binds PDGF-B. Treatment with AX102 led to progressive reduction of pericytes, identified by PDGF receptor beta, NG2, desmin, or alpha-smooth muscle actin immunoreactivity, in Lewis lung carcinomas.

View Article and Find Full Text PDF

Purpose: The aim of the study is to determine the bioactivity and effects of PEGylation on the pharmacokinetics in rabbit aqueous humor and plasma of an aptamer directed against TGFbeta2.

Methods: Pharmacological activity of anti-TGFbeta2 aptamer in rabbit ocular fluid was demonstrated using a mink lung epithelial cell proliferation assay. For pharmacokinetic analyses, concentrations of aptamers in plasma and aqueous humor were determined over time following bilateral subconjunctival administration to Dutch-belted rabbits using a hybridization-based pseudo-enzyme-linked immunosorbent assay (ELISA) assay.

View Article and Find Full Text PDF

Aptamers (protein binding oligonucleotides) have potential as a new class of targeted therapeutics. For applications requiring chronic systemic administration, aptamers must achieve high-affinity target binding while simultaneously retaining high in vivo stability, tolerability, and ease of chemical synthesis. To this end, we describe a method for generating aptamers composed entirely of 2'-O-methyl nucleotides (mRmY).

View Article and Find Full Text PDF

Two molecular sensors that specifically recognize ADP in a background of over 100-fold molar excess of ATP are described. These sensors are nucleic-acid based and comprise a general method for monitoring protein kinase activity. The ADP-aptamer scintillation proximity assay is configured in a single-step, homogeneous format while the allosteric ribozyme (RiboReporter) sensor generates a fluorescent signal upon ADP-dependent ribozyme self-cleavage.

View Article and Find Full Text PDF

Ribonuclease P (RNase P) is a ribonucleoprotein that requires magnesium ions to catalyze the 5' maturation of transfer RNA. To identify interactions essential for catalysis, the properties of RNase P containing single sulfur substitutions for nonbridging phosphodiester oxygens in helix P4 of Bacillus subtilis RNase P were analyzed using transient kinetic experiments. Sulfur substitution at the nonbridging oxygens of the phosphodiester bond of nucleotide U51 only modestly affects catalysis.

View Article and Find Full Text PDF

The RNA subunit of bacterial ribonuclease P (RNase P) requires high concentrations of magnesium ions for efficient catalysis of tRNA 5'-maturation in vitro. The protein component of RNase P, required for cleavage of precursor tRNA in vivo, enhances pre-tRNA binding by directly contacting the 5'-leader sequence. Using a combination of transient kinetics and equilibrium binding measurements, we now demonstrate that the protein component of RNase P also facilitates catalysis by specifically increasing the affinities of magnesium ions bound to the RNase P x pre-tRNA(Asp) complex.

View Article and Find Full Text PDF