Publications by authors named "Jeffrey Kurkewich"

CUX1 is a homeodomain-containing transcription factor that is essential for the development and differentiation of multiple tissues. CUX1 is recurrently mutated or deleted in cancer, particularly in myeloid malignancies. However, the mechanism by which CUX1 regulates gene expression and differentiation remains poorly understood, creating a barrier to understanding the tumor-suppressive functions of CUX1.

View Article and Find Full Text PDF

Therapy-related myeloid neoplasms (t-MNs) are high-risk late effects with poorly understood pathogenesis in cancer survivors. It has been postulated that, in some cases, hematopoietic stem and progenitor cells (HSPCs) harboring mutations are selected for by cytotoxic exposures and transform. Here, we evaluate this model in the context of deficiency of CUX1, a transcription factor encoded on chromosome 7q and deleted in half of t-MN cases.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) are an attractive therapeutic target due to their predicted role in both metastasis and chemoresistance. One of the most commonly agreed on markers for ovarian CSCs is the cell surface protein CD133. CD133+ ovarian CSCs have increased tumorigenicity, resistance to chemotherapy, and increased metastasis.

View Article and Find Full Text PDF

Mice deficient for microRNA (miRNA) cluster mirn23a exhibit increased B lymphopoiesis at the expense of myelopoiesis, whereas hematopoietic stem and progenitor cell (HSPC) populations are unchanged. Mammals possess a paralogous mirn23b gene that can give rise to three mature miRNAs (miR-23b, miR-24-1, and miR-27b) that have identical seed/mRNA-targeting sequences to their mirn23a counterparts. To assess whether compound deletion of mirn23a and mirn23b exacerbates the hematopoietic phenotype observed in mirn23a mice, we generated a compound mirn23amirn23b:Mx1-Cre conditional knockout mouse and assayed hematopoietic development after excision of mirn23b.

View Article and Find Full Text PDF

MicroRNA cluster mirn23a has previously been shown to promote myeloid development at the expense of lymphoid development in overexpression and knockout mouse models. This polarization is observed early in hematopoietic development, with an increase in common lymphoid progenitors (CLPs) and a decrease in all myeloid progenitor subsets in adult bone marrow. The pool size of multipotential progenitors (MPPs) is unchanged; however, in this report we observe by flow cytometry that polarized subsets of MPPs are changed in the absence of mirn23a.

View Article and Find Full Text PDF

Arid3a and Arid3b belong to a subfamily of ARID (AT-rich interaction domain) transcription factors. The Arid family is involved in regulating chromatin accessibility, proliferation, and differentiation. Arid3a and Arid3b are closely related and share a unique REKLES domain that mediates their homo- and hetero-multimerization.

View Article and Find Full Text PDF

Ablation of microRNA synthesis by deletion of the microRNA-processing enzyme Dicer has demonstrated that microRNAs are necessary for normal hematopoietic differentiation and function. However, it is still unclear which specific microRNAs are required for hematopoiesis and at what developmental stages they are necessary. This is especially true for immune cell development.

View Article and Find Full Text PDF

Antagonistic interactions between transcription factors contribute to cell fate decisions made by multipotent hematopoietic progenitor cells. Concentration of the transcription factor PU.1 affects myeloid/lymphoid development with high levels of PU.

View Article and Find Full Text PDF

The DNA-binding protein AT-Rich Interactive Domain 3B (ARID3B) is elevated in ovarian cancer and increases tumor growth in a xenograft model of ovarian cancer. However, relatively little is known about ARID3B's function. In this study we perform the first genome wide screen for ARID3B direct target genes and ARID3B regulated pathways.

View Article and Find Full Text PDF

Early diagnosis of neurological disorders would greatly improve their management and treatment. A major hurdle is that inflammatory products of cerebral disease are not easily detected in blood. Inflammation in multiple organs and heterogeneity in disease present additional challenges in distinguishing the extent to which a blood-based marker reflects disease in brain or other afflicted organs.

View Article and Find Full Text PDF

Genome-wide gene expression profiling was carried out on rat hepatoma cells and compared to profiles of hepatoma "variant" cell lines derived via a stringent selection protocol that enriches for rare cells (<1 in 100,000 cells) that fail to drive liver function. Results show 132 genes that are strongly (>5-fold) repressed in each of the four variant cell lines tested. An additional 68 genes were repressed in 3 of 4 variant cell lines.

View Article and Find Full Text PDF