This paper addresses robust adaptive beamforming for passive sonar in uncertain, shallow-water environments. Conventional beamforming is still common in passive sonar because adaptive beamformers suffer from signal mismatch in complex multipath environments. Existing approaches to robust adaptive beamforming try to model and account for the uncertainty in the beamformer's hypothesized signal subspace by using additional linear or quadratic constraints.
View Article and Find Full Text PDFThis work concerns the development of field directionality mapping algorithms for short acoustic arrays on mobile maneuverable platforms that avoid the left/right ambiguities and endfire resolution degradation common to longer non-maneuverable line arrays. In this paper, it is shown that short maneuverable arrays can achieve a high fraction of usable bearing space for target detection in interference-dominated scenarios, despite their lower array gain against diffuse background noise. Two narrowband techniques are presented which use the expectation-maximization maximum likelihood algorithm under different models of the time-varying field directionality.
View Article and Find Full Text PDFThis paper addresses depth discrimination of a water column target from bottom clutter discretes in wideband active sonar. To facilitate classification, the waveguide invariant property is used to derive multiple snapshots by uniformly sub-sampling the short-time Fourier transform (STFT) coefficients of a single ping of wideband active sonar data. The sub-sampled target snapshots are used to define a waveguide invariant spectral density matrix (WI-SDM), which allows the application of adaptive matched-filtering based approaches for target depth classification.
View Article and Find Full Text PDFJ Acoust Soc Am
December 2010
This paper addresses the problem of field directionality mapping (FDM) or spatial spectrum estimation in dynamic environments with a maneuverable towed acoustic array. Array processing algorithms for towed arrays are typically designed assuming the array is straight, and are thus degraded during tow-ship maneuvers. In this paper, maneuvering the array is treated as a feature allowing for left and right disambiguation as well as improved resolution toward endfire.
View Article and Find Full Text PDFJ Acoust Soc Am
November 2008
Reverberation often limits the performance of active sonar systems. In particular, backscatter off of a rough ocean floor can obscure target returns and/or large bottom scatterers can be easily confused with water column targets of interest. Conventional active sonar detection involves constant false alarm rate (CFAR) normalization of the reverberation return which does not account for the frequency-selective fading caused by multipath propagation.
View Article and Find Full Text PDFJ Acoust Soc Am
March 2008
The performance of broadband sonar array processing can degrade significantly in shallow-water environments when interference becomes angularly spread due to multipath propagation. Particularly for towed line arrays near endfire, elevation angle spreading of multipath interference often results in masking of weaker sources of interest. While adaptive beamforming in a series of narrow frequency bands can suppress coherent multipath interference, this approach requires long observation times to estimate the required narrowband covariance matrices.
View Article and Find Full Text PDFTask-related head movement during acquisition of fMRI data represents a serious confound for both motion correction and estimates of task-related activation. Cost functions implemented in most conventional motion-correction algorithms compare two volumes for similarity but fail to account for signal variability that is not due to motion (e.g.
View Article and Find Full Text PDFA three-dimensional image registration method for motion correction of functional magnetic resonance imaging (fMRI) time-series, based on independent component analysis (ICA), is described. We argue that movement during fMRI data acquisition results in a simultaneous increase in the joint entropy of the observed time-series and a decrease in the joint entropy of a nonlinear function of the derived spatially independent components calculated by ICA. We propose this entropy difference as a reliable criterion for motion correction and refer to a method that maximizes this as motion-corrected ICA (MCICA).
View Article and Find Full Text PDFThis work concerns the problem of estimating the depth of a submerged scatterer in a shallow-water ocean by using an active sonar and a horizontal receiver array. As in passive matched-field processing (MFP) techniques, numerical modeling of multipath propagation is used to facilitate localization. However, unlike passive MFP methods where estimation of source range is critically dependent on relative modal phase modeling, in active sonar source range is approximately known from travel-time measurements.
View Article and Find Full Text PDFMatched-field track-before-detect processing, which extends the concept of matched-field processing to include modeling of the source dynamics, has recently emerged as a promising approach for maintaining the track of a moving source. In this paper, optimal Bayesian and minimum variance beamforming track-before-detect algorithms which incorporate a priori knowledge of the source dynamics in addition to the underlying uncertainties in the ocean environment are presented. A Markov model is utilized for the source motion as a means of capturing the stochastic nature of the source dynamics without assuming uniform motion.
View Article and Find Full Text PDF