Excitatory glutamatergic NMDA receptors (NMDARs) are key regulators of spinal pain processing, and yet the biophysical properties of NMDARs in dorsal horn nociceptive neurons remain poorly understood. Despite the clinical implications, it is unknown whether the molecular and functional properties of synaptic NMDAR responses are conserved between males and females or translate from rodents to humans. To address these translational gaps, we systematically compared individual and averaged excitatory synaptic responses from lamina I pain-processing neurons of adult Sprague-Dawley rats and human organ donors, including both sexes.
View Article and Find Full Text PDFPreclinical assessments of pain have often relied upon behavioral measurements and anesthetized neurophysiological recordings. Current technologies enabling large-scale neural recordings, however, have the potential to unveil quantifiable pain signals in conscious animals for preclinical studies. Although pain processing is distributed across many brain regions, the anterior cingulate cortex (ACC) is of particular interest in isolating these signals given its suggested role in the affective ("unpleasant") component of pain.
View Article and Find Full Text PDFCurrent therapies for the treatment of chronic pain provide inadequate relief for millions of suffering patients, demonstrating the need for better therapies that will treat pain effectively and improve the quality of patient's lives. Better understanding of the mechanisms that mediate chronic pain is critical for developing drugs with improved clinical outcomes. Adenosine triphosphate (ATP) is a key modulator in nociceptive pathways.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
October 2020
We investigated voltage-gated sodium channel (Na1) subunits that regulate action potential initiation in the nerve terminals of vagal nodose C-fibers innervating the esophagus. Extracellular single fiber recordings were made from the nodose C-fibers, with mechanically sensitive nerve terminals in the isolated innervated guinea pig esophagus. Na1 inhibitors were selectively delivered to the tissue-containing nerve terminals.
View Article and Find Full Text PDFPreviously we reported that a group of inflammatory mediators significantly enhanced resurgent currents in dorsal root ganglion neurons. To understand the underlying intracellular signaling mechanism, we investigated the effects of inhibition of extracellular signal-regulated kinases and protein kinase C on the enhancing effects of inflammatory mediators on resurgent currents in rat dorsal root ganglion neurons. We found that the extracellular signal-regulated kinases inhibitor U0126 completely prevented the enhancing effects of the inflammatory mediators on both Tetrodotoxin-sensitive and Tetrodotoxin-resistant resurgent currents in both small and medium dorsal root ganglion neurons.
View Article and Find Full Text PDFWe evaluated the effect of voltage-gated sodium channel 1 (Na1) blockers in three nonoverlapping C-fiber subtypes in the mouse skin: chloroquine (CQ)-sensitive C-fibers with high mechanical thresholds- second, CQ-insensitive, capsaicin-sensitive C-fibers with high mechanical thresholds- and CQ and capsaicin-insensitive C-fibers with a very low mechanical threshold-C-LTMs. Na1-blocking drugs were applied to the nerve terminal receptive fields using an innervated isolated dorsal mouse skin-nerve preparation where the drugs are delivered into the skin intra-arterially. We combined these studies with an analysis of the mRNA expression of the -subunits of Na1 in individual dorsal root ganglia neurons labeled from the same region of the skin.
View Article and Find Full Text PDFLittle is known about the neuronal voltage-gated sodium channels (NaVs) that control neurotransmission in the parasympathetic nervous system. We evaluated the expression of the subunits of each of the nine NaVs in human, guinea pig, and mouse airway parasympathetic ganglia. We combined this information with a pharmacological analysis of selective NaV blockers on parasympathetic contractions of isolated airway smooth muscle.
View Article and Find Full Text PDFResurgent sodium currents likely play a role in modulating neuronal excitability. Here we studied whether protein kinase C (PKC) activation can increase resurgent currents produced by the human sodium channel hNav1.7.
View Article and Find Full Text PDFResurgent sodium currents contribute to the regeneration of action potentials and enhanced neuronal excitability. Tetrodotoxin-sensitive (TTX-S) resurgent currents have been described in many different neuron populations, including cerebellar and dorsal root ganglia (DRG) neurons. In most cases, sodium channel Nav1.
View Article and Find Full Text PDFBioorg Med Chem Lett
November 2010
It was hypothesized that an appropriately substituted 2,8-diazaspiro[4.5]decan-1-one could effectively approximate a 5-feature T-type pharmacophore model published in the literature. Compounds were designed and synthesized to test our hypothesis and were found to be potent T-type calcium channel inhibitors with modest selectivity over L-type calcium channels.
View Article and Find Full Text PDFPharmaceuticals (Basel)
September 2010
Current marketed antiepileptic drugs (AEDs) consist of a variety of structural classes with different mechanisms of action. These agents typically have non-overlapping efficacy and side-effect profiles presenting multiple treatment options for the patient population. However, approximately 30% of seizure sufferers fail to respond to current therapies often because poorly tolerated side-effects limit adequate dosing.
View Article and Find Full Text PDFIt has been demonstrated using single-cell and multiunit electrophysiology in layer III entorhinal cortex and disinhibited hippocampal CA3 slices that the balancing of the up-down activity is characterized by both GABA(A) and GABA(B) mechanisms. Here we report novel results obtained using multi-electrode array (60 electrodes) simultaneous recordings from reverberating postnatal neocortical networks containing 19.2 +/- 1.
View Article and Find Full Text PDFCyclic nucleotide-gated (CNG) ion channels are crucial for phototransduction in rod photoreceptors. Light triggers a biochemical cascade that reduces the concentration of cGMP in rods, closing CNG channels, which leads to membrane potential hyperpolarization and a decrease in the concentration of intracellular Ca2+. During light adaptation, the sensitivity of CNG channels to cGMP is decreased by Ca2+, which in conjunction with calmodulin (CaM), binds directly to CNG channels.
View Article and Find Full Text PDFCyclic nucleotide-gated (CNG) channels in rod photoreceptors transduce a decrease in cGMP into hyperpolarization during the light response. Insulin-like growth factor-1 (IGF-1) increases light responses by increasing the cGMP sensitivity of CNG channels, an event mediated by a protein tyrosine phosphatase. Native rod CNG channels are heteromultimers, composed of three CNGA1 subunits and one CNGB1 subunit.
View Article and Find Full Text PDF