Publications by authors named "Jeffrey J Yourick"

Since the passage of the 2018 Agriculture Improvement Act (2018 Farm Bill), the number of products containing cannabis-derived compounds available to consumers have rapidly increased. Potential effects on liver function as a result from consumption of products containing cannabidiol (CBD), including hemp extracts, have been observed but the mechanisms for the effects are not fully understood. In this study, hepatocytes derived from human induced pluripotent stem cells (iPSCs) were used to evaluate potential hepatic effects of CBD and hemp extract at exposure concentrations ranging from 0.

View Article and Find Full Text PDF

Cannabidiol (CBD) has been reported to induce hepatotoxicity in clinical trials and research studies; however, little is known about the safety of other nonintoxicating cannabinoids. New approach methodologies (NAMs) based on bioinformatic analysis of high-throughput transcriptomic data are gaining increasing importance in risk assessment and regulatory decision-making of data-poor chemicals. In the current study, we conducted a concentration response transcriptomic analysis of hemp extract and its four major constituent cannabinoids [CBD, cannabichromene (CBC), cannabigerol (CBG), and cannabinol (CBN)] in hepatocytes derived from human induced pluripotent stem cells (iPSCs).

View Article and Find Full Text PDF

Despite two decades of research on silver nanoparticle (AgNP) toxicity, a safe threshold for exposure has not yet been established, albeit being critically needed for risk assessment and regulatory decision-making. Traditionally, a point-of-departure (PoD) value is derived from dose response of apical endpoints in animal studies using either the no-observed-adverse-effect level (NOAEL) approach, or benchmark dose (BMD) modeling. To develop new approach methodologies (NAMs) to inform human risk assessment of AgNPs, we conducted a concentration response modeling of the transcriptomic changes in hepatocytes derived from human induced pluripotent stem cells (iPSCs) after being exposed to a wide range concentration (0.

View Article and Find Full Text PDF

Dietary supplements containing usnic acid have been increasingly marketed for weight loss over the past decades, even though incidences of severe hepatotoxicity and acute liver failure due to their overuse have been reported. To date, the toxic mechanism of usnic acid-induced liver injury at the molecular level still remains to be fully elucidated. Here, we conducted a transcriptomic study on usnic acid using a novel in vitro hepatotoxicity model employing human induced pluripotent stem cell (iPSC)-derived hepatocytes.

View Article and Find Full Text PDF

Variability in supply, paucity of donors and cellular instability under in vitro conditions have limited the application of primary human hepatocytes (PHHs) to hepatotoxicity testing. Therefore, alternative sources have been sought for functional liver cells. Many of the earlier in vitro hepatotoxicity studies were carried out using hepatoma-derived cell lines.

View Article and Find Full Text PDF

A variety of methods have been reported for the differentiation of hepatocyte-like cells (HLCs) from human induced pluripotent stem cells (iPSCs) using various growth factors or small molecules. However, direct comparison of the differentiation efficiency and the quality of the final HLCs between different methods has rarely been reported. To fill this data gap, we compared two hepatocyte differentiation methods, termed Method 1 and Method 2, and published the major findings in a research article entitled "Phenotypical, functional and transcriptomic comparison of two modified methods of hepatocyte differentiation from human induced pluripotent stem cells" (Li et al.

View Article and Find Full Text PDF

Hepatocyte-like cells (HLCs) generated from human induced pluripotent stem cells (iPSCs) could provide an unlimited source of liver cells for regenerative medicine, disease modeling, drug screening, and toxicology studies. Here we describe a stepwise improved protocol that enables highly efficient, homogeneous, and reproducible differentiation of human iPSCs into functional hepatocytes through controlling all three stages of hepatocyte differentiation, starting from a single cell (non-colony) culture of iPSCs, through homogeneous definitive endoderm induction and highly efficient hepatic specification, and finally arriving at matured HLCs. The final population of cells exhibits morphology closely resembling that of primary human hepatocytes, and expresses specific hepatic markers as evidenced by immunocytochemical staining.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (iPSCs) hold great promise for biomedical applications. However, establishment of new iPSC lines still presents many challenges. Here we describe a simple yet highly efficient two-step protocol for the isolation and purification of human iPSC lines.

View Article and Find Full Text PDF

Directed differentiation of human induced pluripotent stem cells (iPSCs) into hepatocytes could provide an unlimited source of liver cells, and therefore holds great promise for regenerative medicine, disease modeling, drug screening and toxicology studies. Various methods have been established during the past decade to differentiate human iPSCs into hepatocyte-like cells (HLCs) using growth factors and/or small molecules. However, direct comparison of the differentiation efficiency and the quality of the final HLCs between different methods has rarely been reported.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) have been increasingly used in a variety of consumer products over the last decades. However, their potential adverse effects have not been fully understood. In a previous study, we characterized transcriptomic changes in human induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (HLCs) in response to AgNP exposure.

View Article and Find Full Text PDF

Induced pluripotent stem cells (iPSCs) offer the potential to generate tissue cells with donor diversity therefore promising to have widespread applications in regenerative medicine, disease modeling, drug discovery, and toxicity testing. Several somatic cell types have been utilized, with varying efficiencies, as source cells for the reprogramming of iPSCs. Recently, it has been reported that endothelial progenitor cells (EPCs) derived from umbilical cord blood (CB) or adult peripheral blood (PB) afford a practical and efficient cellular substrate for iPSC generation, and possess several advantages over other cell types.

View Article and Find Full Text PDF

Background: Hepatocyte-like cells (HLCs) derived from human induced pluripotent stem cells (iPSCs) hold great promise in toxicological applications as well as in regenerative medicine. Previous efforts on hepatocyte differentiation have mostly relied on the use of growth factors (GFs) to recapitulate developmental signals under in vitro conditions. Recently, the use of small molecules (SMs) has emerged as an attractive tool to induce cell fate transition due to its superiority in terms of both quality and cost.

View Article and Find Full Text PDF

The application of silver nanoparticles (AgNPs) in consumer products has been increasing rapidly over the past decades. Therefore, in vitro models capable of accurately predicting the toxicity of AgNPs are much needed. Hepatocyte-like cells (HLCs) derived from human induced pluripotent stem cells (iPSCs) represent an attractive alternative in vitro hepatotoxicity model.

View Article and Find Full Text PDF

Background: Nanoparticles exhibit unique physiochemical characteristics that provide the basis for their utilization. The diversity of potential and actual applications compels a thorough understanding regarding the consequences of their containment within the cellular environment.

Purpose: This paper presents a flow cytometric examination of the biologic effects associated with the internalization of citrate-buffered silver (Ag) nanoparticles (NP) by the murine macrophage cell line, RAW264.

View Article and Find Full Text PDF

Human-induced pluripotent stem cells (iPSCs) hold considerable promise for future biomedical applications. However, the generation, isolation, and establishment of an iPSC line still presents many challenges. In this study, we describe a simple yet highly efficient two-step method for the isolation, purification, and passaging of human iPSC lines that utilizes commercially available reagents.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (iPSCs) provide a potentially unlimited source of differentiated cells from individuals with specific genetic backgrounds. Using self-replicative RNA reprogramming technology, we generated nine iPSC lines from endothelial progenitor cells (EPCs) derived from blood samples of three different ethnicities: Black or African American, Latino or Hispanic, and Non-Hispanic White. The resulting iPSC lines showed normal karyotype in large part, expressed pluripotency marker genes, and spontaneously differentiated in vitro into the three germ layers.

View Article and Find Full Text PDF

In this study, the effects of surface charge, dose, and cosmetic vehicle on the penetration of silver nanoparticles (AgNPs) into pig and human skin were compared. AgNPs (20 nm) with varying surface-charges (polyethylene glycol (PEG; neutral), citrate (CIT; negative), and branched polyethylenimine (bPEI; positive) were dosed onto skin in in vitro diffusion cells using an aqueous solution and an oil-in-water emulsion formulation. Samples were analyzed by inductively coupled plasma mass spectroscopy (ICP-MS) and transmission electron microscope (TEM) to assess AgNP skin penetration.

View Article and Find Full Text PDF

Induced pluripotent stem cells (iPSCs) offer the potential to generate tissues with ethnic diversity enabling toxicity testing on selected populations. Recently, it has been reported that endothelial progenitor cells (EPCs) derived from umbilical cord blood (CB) or adult peripheral blood (PB) afford a practical and efficient cellular substrate for iPSC generation. However, differences between EPCs from different blood sources have rarely been studied.

View Article and Find Full Text PDF

Background: The widespread application of silver nanoparticles (AgNPs) and silver-containing products has raised public safety concerns about their adverse effects on human health and the environment. To date, in vitro toxic effects of AgNPs and ionic silver (Ag) on many somatic cell types are well established. However, no studies have been conducted hitherto to evaluate their effect on cellular transcriptome in embryonic stem cells (ESCs).

View Article and Find Full Text PDF

Thalidomide is a potent developmental toxicant that induces a range of birth defects, notably severe limb malformations. To unravel the molecular mechanisms underpinning the teratogenic effects of thalidomide, we used microarrays to study transcriptomic changes induced by thalidomide in an in vitro model based on the differentiation of mouse embryonic stem cells (mESCs), and published the major findings in a research article entitled "Thalidomide induced early gene expression perturbations indicative of human embryopathy in mouse embryonic stem cells" [1]. The data presented herein contains complementary information related to the aforementioned research article.

View Article and Find Full Text PDF

The increased use of silver nanoparticles (AgNPs) in foods and cosmetics has raised public safety concerns. However, only limited knowledge exists on the effect of AgNPs on the cellular transcriptome. This study evaluated global gene expression profiles of human liver HepG2 cells exposed to 20 and 50 nm AgNPs for 4 and 24 h at 2.

View Article and Find Full Text PDF

Developmental toxicity testing has traditionally relied on animal models which are costly, time consuming, and require the sacrifice of large numbers of animals. In addition, there are significant disparities between human beings and animals in their responses to chemicals. Thalidomide is a species-specific developmental toxicant that causes severe limb malformations in humans but not in mice.

View Article and Find Full Text PDF

Male and female rats (26-day-old) were exposed to 0.0, 0.4, 4 or 40 mg/kg body weight silver acetate (AgAc) in drinking water for 10 weeks prior to and during mating.

View Article and Find Full Text PDF

The Tox21 program calls for transforming toxicology testing from traditional in vivo tests to less expensive and higher throughput in vitro methods. In developmental toxicology, a spectrum of alternative methods including cell line based tests has been developed. In particular, embryonic stem cells (ESCs) have received widespread attention as a promising alternative model for developmental toxicity assessment.

View Article and Find Full Text PDF

Two widely used in vitro cell culture models, human liver HepG2 cells and human colon Caco2 cells, and flow cytometry techniques were evaluated as tools for rapid screening of potential genotoxicity of food-related nanosilver. Comparative genotoxic potential of 20 nm silver was evaluated in HepG2 and Caco2 cell cultures by a flow cytometric-based in vitro micronucleus assay. The nanosilver, characterized by the dynamic light scattering, transmission electron microscopy and inductively coupled plasma-mass spectrometry analysis, showed no agglomeration of the silver nanoparticles.

View Article and Find Full Text PDF