Publications by authors named "Jeffrey J McGuire"

Oceanic transform faults display a unique combination of seismic and aseismic slip behavior, including a large globally averaged seismic deficit, and the local occurrence of repeating magnitude (M) [Formula: see text] earthquakes with abundant foreshocks and seismic swarms, as on the Gofar transform of the East Pacific Rise and the Blanco Ridge in the northeast Pacific Ocean. However, the underlying mechanisms that govern the partitioning between seismic and aseismic slip and their interaction remain unclear. Here we present a numerical modeling study of earthquake sequences and aseismic transient slip on oceanic transform faults.

View Article and Find Full Text PDF

Water-driven fracture propagation beneath supraglacial lakes rapidly transports large volumes of surface meltwater to the base of the Greenland Ice Sheet. These drainage events drive transient ice-sheet acceleration and establish conduits for additional surface-to-bed meltwater transport for the remainder of the melt season. Although it is well established that cracks must remain water-filled to propagate to the bed, the precise mechanisms that initiate hydro-fracture events beneath lakes are unknown.

View Article and Find Full Text PDF

East Pacific Rise transform faults are characterized by high slip rates (more than ten centimetres a year), predominantly aseismic slip and maximum earthquake magnitudes of about 6.5. Using recordings from a hydroacoustic array deployed by the National Oceanic and Atmospheric Administration, we show here that East Pacific Rise transform faults also have a low number of aftershocks and high foreshock rates compared to continental strike-slip faults.

View Article and Find Full Text PDF