Publications by authors named "Jeffrey Hesler"

We report the measurement of the frequency noise power spectral density (PSD) of a Terahertz (THz) molecular laser (ML) pumped by a mid-infrared (MIR) quantum cascade laser (QCL), and emitting 1 mW at 1.1THz in continuous wave. This is achieved by beating the ML frequency with the 1080 harmonic of the repetition rate of a 1560 nm frequency comb (FC).

View Article and Find Full Text PDF

The development of new, high-frequency solid-state diode sources capable of operating at 263 GHz, together with an optimized stator design for improved millimeter-wave coupling to the NMR sample, have enabled low-power DNP experiments at 263 GHz/400 MHz. With 250 mW output power, signal enhancements as high as 120 are achieved on standard samples - approximately 1/3 of the maximal enhancement available with high-power gyrotrons under similar conditions. Diode-based sources have a number of advantages over vacuum tube devices: they emit a pure mode, can be rapidly frequency-swept over a wide range of frequencies, have reproducible output power over this range, and have excellent output stability.

View Article and Find Full Text PDF

Using arbitrary periodic pulse patterns we show the enhancement of specific frequencies in a frequency comb. The envelope of a regular frequency comb originates from equally spaced, identical pulses and mimics the single pulse spectrum. We investigated spectra originating from the periodic emission of pulse trains with gaps and individual pulse heights, which are commonly observed, for example, at high-repetition-rate free electron lasers, high power lasers, and synchrotrons.

View Article and Find Full Text PDF

Terahertz spectroscopy has long been used as an important measurement tool in fields such as radio astronomy, physical chemistry, atmospheric studies and plasma research. More recently terahertz technology has been used to develop an exciting new technique to investigate the properties of a wide range of biological materials. Although much research remains before a full understanding of the interaction between biomaterials and terahertz radiation is developed, these initial studies have created a compelling case for further scientific study.

View Article and Find Full Text PDF