Plant pathogens cause significant crop loss worldwide, and new resistance genes deployed to combat diseases can be overcome quickly. Understanding the existing resistance gene diversity within the germplasm of major crops, such as maize, is crucial for the development of new disease-resistant varieties. We analysed the nucleotide-binding leucine-rich repeat receptors (NLRs) of 26 recently sequenced diverse founder lines from the maize nested association mapping (NAM) population and compared them to the R gene complement present in a wild relative of maize, Zea luxurians.
View Article and Find Full Text PDFBiotechnology has emerged as a valuable tool in the development of maize (Zea mays L.) hybrids with enhanced nitrogen (N) use efficiency. Recent work has described the positive effects of an increased and extended expression of the zmm28 transcription factor (Event DP202216) on maize yield productivity.
View Article and Find Full Text PDFPlant flowers have a functional life span during which pollination and fertilization occur to ensure seed and fruit development. Once flower senescence is initiated, the potential to set seed or fruit is irrevocably lost. In maize, silk strands are the elongated floral stigmas that emerge from the husk-enveloped inflorescence to intercept airborne pollen.
View Article and Find Full Text PDFSevere drought stress can delay maize silk emergence relative to the pollen shedding period, resulting in poor fertilization and reduced grain yield. Methods to minimize the delay in silking could thus improve yield stability. An enhancer-tagged carboxylesterase 20 () line was identified in a drought tolerance screen.
View Article and Find Full Text PDFCorteva Agriscience™ ran a discovery research program to identify biotech leads for improving maize Agronomic Traits such as yield, drought tolerance, and nitrogen use efficiency. Arising from many discovery sources involving thousands of genes, this program generated over 3331 DNA cassette constructs involving a diverse set of circa 1671 genes, whose transformed maize events were field tested from 2000 to 2018 under managed environments designed to evaluate their potential for commercialization. We demonstrate that a subgroup of these transgenic events improved yield in field-grown elite maize breeding germplasm.
View Article and Find Full Text PDFOsGhd7 gene was discovered by screening our rice activation tagging population. CRISPR-Cas9 created knockouts of OsGhd7 conferred early flowering and early maturity in rice varieties across multiple geographical locations in China. Our research shows that OsGhd7 is a good target for breeding early maturity rice varieties, and an excellent example of the advantages of applying the CRISPR-Cas9 technology for trait improvement.
View Article and Find Full Text PDFThe Zea Mays BIG GRAIN 1 HOMOLOG 1 (ZM-BG1H1) was ectopically expressed in maize. Elite commercial hybrid germplasm was yield tested in diverse field environment locations representing commercial models. Yield was measured in 101 tests across all 4 events, 26 locations over 2 years, for an average yield gain of 355 kg/ha (5.
View Article and Find Full Text PDFCRISPR-edited variants at the 3'-end of OsLOGL5's coding sequence (CDS), significantly increased rice grain yield under well-watered, drought, normal nitrogen, and low nitrogen field conditions at multiple geographical locations. Cytokinins impact numerous aspects of plant growth and development. This study reports that constitutive ectopic overexpression of a rice cytokinin-activation enzyme-like gene, OsLOGL5, significantly reduced primary root growth, tiller number, and yield.
View Article and Find Full Text PDFIncreasing maize grain yield has been a major focus of both plant breeding and genetic engineering to meet the global demand for food, feed, and industrial uses. We report that increasing and extending expression of a maize MADS-box transcription factor gene, , under the control of a moderate-constitutive maize promoter, results in maize plants with increased plant growth, photosynthesis capacity, and nitrogen utilization. Molecular and biochemical characterization of transgenic plants demonstrated that their enhanced agronomic traits are associated with elevated plant carbon assimilation, nitrogen utilization, and plant growth.
View Article and Find Full Text PDFMaize originated as a tropical plant that required short days to transition from vegetative to reproductive development. ZmCCT10 [CO, CONSTANS, CO-LIKE and TIMING OF CAB1 (CCT) transcription factor family] is a regulator of photoperiod response and was identified as a major QTL controlling photoperiod sensitivity in maize. We modulated expression of ZmCCT10 in transgenic maize using two constitutive promoters with different expression levels.
View Article and Find Full Text PDFEthylene plays a critical role in many diverse processes in plant development. Recent studies have demonstrated that overexpression of the maize ARGOS8 gene reduces the plant's response to ethylene by decreasing ethylene signaling and enhances grain yield in transgenic maize plants. The objective of this study was to determine the effects of ethylene on the development of nodal roots, which are primarily responsible for root-lodging resistance in maize.
View Article and Find Full Text PDFDrought stress is one of the main environmental problems encountered by crop growers. Reduction in arable land area and reduced water availability make it paramount to identify and develop strategies to allow crops to be more resilient in water-limiting environments. The plant hormone abscisic acid (ABA) plays an important role in the plants' response to drought stress through its control of stomatal aperture and water transpiration, and transgenic modulation of ABA levels therefore represents an attractive avenue to improve the drought tolerance of crops.
View Article and Find Full Text PDFMaize ARGOS8 is a negative regulator of ethylene responses. A previous study has shown that transgenic plants constitutively overexpressing ARGOS8 have reduced ethylene sensitivity and improved grain yield under drought stress conditions. To explore the targeted use of ARGOS8 native expression variation in drought-tolerant breeding, a diverse set of over 400 maize inbreds was examined for ARGOS8 mRNA expression, but the expression levels in all lines were less than that created in the original ARGOS8 transgenic events.
View Article and Find Full Text PDFThe phytohormone ethylene regulates plant growth and development as well as plant response to environmental cues. ARGOS genes reduce plant sensitivity to ethylene when overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). A previous genetic study suggested that the endoplasmic reticulum and Golgi-localized maize ARGOS1 targets the ethylene signal transduction components at or upstream of CONSTITUTIVE TRIPLE RESPONSE1, but the mechanism of ARGOS modulating ethylene signaling is unknown.
View Article and Find Full Text PDFAlternative splicing plays a crucial role in plant development as well as stress responses. Although alternative splicing has been studied during development and in response to stress, the interplay between these two factors remains an open question. To assess the effects of drought stress on developmentally regulated splicing in maize (Zea mays), 94 RNA-seq libraries from ear, tassel, and leaf of the B73 public inbred line were constructed at four developmental stages under both well-watered and drought conditions.
View Article and Find Full Text PDFLack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance.
View Article and Find Full Text PDFA transgenic gene-silencing approach was used to modulate the levels of ethylene biosynthesis in maize (Zea mays L.) and determine its effect on grain yield under drought stress in a comprehensive set of field trials. Commercially relevant transgenic events were created with down-regulated ACC synthases (ACSs), enzymes that catalyse the rate-limiting step in ethylene biosynthesis.
View Article and Find Full Text PDFBackground: Plant diurnal rhythms are vital environmental adaptations to coordinate internal physiological responses to alternating day-night cycles. A comprehensive view of diurnal biology has been lacking for maize (Zea mays), a major world crop.
Methodology: A photosynthetic tissue, the leaf, and a non-photosynthetic tissue, the developing ear, were sampled under natural field conditions.
To study the effects of cytokinin O-glucosylation in monocots, maize (Zea mays L.) transformants harbouring the ZOG1 gene (encoding a zeatin O-glucosyltransferase from Phaseolus lunatus L.) under the control of the constitutive ubiquitin (Ubi) promoter were generated.
View Article and Find Full Text PDFCytokinins (CKs) are plant hormones that regulate a large number of processes associated with plant growth and development such as induction of stomata opening, delayed senescence, suppression of auxin-induced apical dominance, signaling of nitrogen availability, differentiation of plastids and control of sink strength. In maize, CKs are thought to play an important role in establishing seed size and increasing seed set under normal and unfavorable environmental conditions therefore influencing yield. In recent years, the discovery of isopentenyl transferase (IPT) genes in plants has shed light on the CK biosynthesis pathway in plants.
View Article and Find Full Text PDFAllelic expression variation of nonimprinted autosomal genes has recently been uncovered in mouse hybrids and humans. The allelic expression variation is attributed to differences in noncoding DNA sequences and does not involve epigenetic regulation or gene imprinting. This expression variation is suggested to play important roles in determining phenotypic diversity.
View Article and Find Full Text PDFCytokinins are hormones that play an essential role in plant growth and development. The irreversible degradation of cytokinins, catalyzed by cytokinin oxidase, is an important mechanism by which plants modulate their cytokinin levels. Cytokinin oxidase has been well characterized biochemically, but its regulation at the molecular level is not well understood.
View Article and Find Full Text PDF