Publications by authors named "Jeffrey G Szabo"

The persistence of high consequence public health pathogens in a wastewater treatment system can significantly impact worker safety, as well as the public and downstream water bodies, particularly if the system is forced to shut down the treatment processes. This study utilizes organism viability to compare the persistence of three pathogen surrogates in wastewater using a pilot-scale activated sludge treatment (AST) system, operated to mimic treatment processes of large-scale plants. Bacillus globigii spores, surrogate for Bacillus anthracis, persisted in the AST system for at least a 50-day observation period leading to a possible steady condition far beyond the solid retention time for sludge particles.

View Article and Find Full Text PDF

Understanding survival mechanisms within building water systems (BWSs) is challenging due to varying engineering, operational, and water quality characteristics unique to each system. This study aimed to evaluate , mycobacteria, and free-living amoebae occurrence within a BWS over 18-28 months at six locations differing in plumbing material and potable water age, quality, and usage. A total of 114 bulk water and 57 biofilm samples were analyzed.

View Article and Find Full Text PDF

Building water systems promote the regrowth and survival of opportunistic pathogens, such as , especially within biofilms, where most drinking water microbes reside. However, compared to their planktonic form, disinfection efficacy for the biofilm-associated forms of water-based pathogens is unclear. The aim of this study was to determine the effectiveness of free chlorine and monochloramine in the inactivation of biofilm-associated strain Philadelphia-1 serogroup 1 (LpP1s1).

View Article and Find Full Text PDF

Decontamination of Bacillus spores adhered to common drinking water infrastructure surfaces was evaluated using a variety of disinfectants. Corroded iron and cement-mortar lined iron represented the infrastructure surfaces, and were conditioned in a 23 m long, 15 cm diameter (75 ft long, 6 in diameter) pilot-scale drinking water distribution pipe system. Decontamination was evaluated using increased water velocity (flushing) alone at 0.

View Article and Find Full Text PDF

Disinfecting water generated from a bioterrorism contamination event will require large amounts of disinfectant since the volume of water flushed from a drinking water distribution system or wash water collected from a contaminated outdoor area can accumulate quickly. Commonly used disinfectants may be unavailable in the necessary amounts, so evaluation of alternative disinfectants is needed. This study focuses on disinfection of Bacillus spores in water using acidified nitrite.

View Article and Find Full Text PDF

Germination was evaluated as an enhancement to decontamination methods for removing Bacillus spores from drinking water infrastructure. Germinating spores before chlorinating cement mortar or flushing corroded iron was more effective than chlorinating or flushing alone.

View Article and Find Full Text PDF

Persistence of Bacillus globigii spores, a surrogate for Bacillus anthracis, was studied on biofouled concrete-lined slides in drinking water using biofilm annular reactors. Reactors were inoculated with B. globigii spores and persistence was monitored in the bulk and biofilm phases, first in dechlorinated water and later with free chlorine concentrations of 1 and 5 mg/L.

View Article and Find Full Text PDF

Contamination of a model drinking water system with surrogate radioisotopes was examined with respect to persistence on and decontamination of infrastructure surfaces. Cesium and cobalt chloride salts were used as surrogates for cesium-137 and cobalt-60. Studies were conducted in biofilm annular reactors containing heavily corroded iron surfaces formed under shear and constantly submerged in drinking water.

View Article and Find Full Text PDF

Persistence of Bacillus atrophaeus subsp. globigii spores on corroded iron coupons in drinking water was studied using a biofilm annular reactor. Spores were inoculated at 10(6) CFU/ml in the dechlorinated reactor bulk water.

View Article and Find Full Text PDF

Persistence of Klebsiella pneumoniae on corroded iron surfaces in drinking water was studied using biofilm annular reactors operated under oligotrophic conditions. Reactors were inoculated with K. pneumoniae, and persistence was monitored in the bulk and biofilm phases.

View Article and Find Full Text PDF