Publications by authors named "Jeffrey G Lawrence"

A ~10-11 bp periodicity in dinucleotides imparting DNA bending, with shorter periods found in organisms with positively-supercoiled DNA and longer periods found in organisms with negatively-supercoiled DNA, was previously suggested to assist in DNA compaction. However, when measured with more robust methods, variation in the observed periods between organisms with different growth temperatures is not consistent with that hypothesis. We demonstrate that dinucleotide periodicity does not arise solely by mutational biases but is under selection.

View Article and Find Full Text PDF

Despite significant frequencies of lateral gene transfer between species, higher taxonomic groups of bacteria show ecological and phenotypic cohesion. This suggests that barriers prevent panmictic dissemination of genes via lateral gene transfer. We have proposed that most bacterial genomes have a functional architecture imposed by Architecture IMparting Sequences (AIMS).

View Article and Find Full Text PDF

Highly Iterated Palindrome 1 (HIP1, GCGATCGC) is hyper-abundant in most cyanobacterial genomes. In some cyanobacteria, average HIP1 abundance exceeds one motif per gene. Such high abundance suggests a significant role in cyanobacterial biology.

View Article and Find Full Text PDF

Neisseria meningitidis is an important cause of meningococcal disease globally. Sequence type (ST)-11 clonal complex (cc11) is a hypervirulent meningococcal lineage historically associated with serogroup C capsule and is believed to have acquired the W capsule through a C to W capsular switching event. We studied the sequence of capsule gene cluster (cps) and adjoining genomic regions of 524 invasive W cc11 strains isolated globally.

View Article and Find Full Text PDF

Despite the importance of host attributes for the likelihood of associated microbial transmission, individual variation is seldom considered in studies of wildlife disease. Here, we test the influence of host phenotypes on social network structure and the likelihood of cuticular bacterial transmission from exposed individuals to susceptible group-mates using female social spiders (Stegodyphus dumicola). Based on the interactions of resting individuals of known behavioural types, we assessed whether individuals assorted according to their behavioural traits.

View Article and Find Full Text PDF

Antigenically distinct members of bacterial species can be differentially distributed in the environment. Predators known to consume antigenically distinct prey with different efficiencies are also differentially distributed. Here we show that antigenically distinct, but otherwise isogenic and physiologically indistinct, strains of show differential survival in natural soil, sediment and intestinal environments, where they would face a community of predators.

View Article and Find Full Text PDF

Neisseria meningitidis is a leading bacterial cause of sepsis and meningitis globally with dynamic strain distribution over time. Beginning with an epidemic among Hajj pilgrims in 2000, serogroup W (W) sequence type (ST) 11 emerged as a leading cause of epidemic meningitis in the African 'meningitis belt' and endemic cases in South America, Europe, Middle East and China. Previous genotyping studies were unable to reliably discriminate sporadic W ST-11 strains in circulation since 1970 from the Hajj outbreak strain (Hajj clone).

View Article and Find Full Text PDF

The bacteriophage population is large, dynamic, ancient, and genetically diverse. Limited genomic information shows that phage genomes are mosaic, and the genetic architecture of phage populations remains ill-defined. To understand the population structure of phages infecting a single host strain, we isolated, sequenced, and compared 627 phages of Mycobacterium smegmatis.

View Article and Find Full Text PDF

Unlabelled: Newly emerging human viruses such as Ebola virus, severe acute respiratory syndrome (SARS) virus, and HIV likely originate within an extant population of viruses in nonhuman hosts and acquire the ability to infect and cause disease in humans. Although several mechanisms preventing viral infection of particular hosts have been described, the mechanisms and constraints on viral host expansion are ill defined. We describe here mycobacteriophage Patience, a newly isolated phage recovered using Mycobacterium smegmatis mc(2)155 as a host.

View Article and Find Full Text PDF

Flow cytometry is an effective tool for enumerating fluorescently-labeled microbes recovered from natural environments. However, low signal strength and the presence of fluorescent, non-cellular particles complicate the separation of cellular events from noise. Existing classification methods rely on the arbitrary placement of noise thresholds, resulting in potentially high rates of misclassification of fluorescent cells, thus precluding the robust estimation of the proportions of classes of fluorescent cells.

View Article and Find Full Text PDF

The traditional genetic tools used in Salmonella enterica serovar Typhimurium rely heavily on a high-transducing mutant of bacteriophage P22. P22 recognizes its hosts by the structure of their O-antigens, which vary among serovars of Salmonella; therefore, it cannot be used in most non-Typhimurium Salmonella, including the majority of those causing food-borne illnesses in both humans and livestock. Bacteriophage P1 infects a variety of enteric bacteria, including galE mutants of serovar Typhimurium; however, the degree to which the presence of coimmune prophages, the lack of required attachment sites or the lack of host factors act as barriers to using phage P1 in natural isolates of Salmonella is unknown.

View Article and Find Full Text PDF

In bacteria, physiological change may be effected by a single gene acquisition, producing ecological differentiation without genetic isolation. Natural selection acting on such differences can reduce the frequency of genotypes that arise from recombination at these loci. However, gene acquisition can only account for recombination interference in the fraction of the genome that is tightly linked to the integration site.

View Article and Find Full Text PDF

Methods for identifying alien genes in genomes fall into two general classes. Phylogenetic methods examine the distribution of a gene's homologues among genomes to find those with relationships not consistent with vertical inheritance. These approaches include identifying orphan genes which lack homologues in closely related genomes and genes with unduly high levels of similarity to genes in otherwise unrelated genomes.

View Article and Find Full Text PDF

Background: Statistics measuring codon selection seek to compare genes by their sensitivity to selection for translational efficiency, but existing statistics lack a model for testing the significance of differences between genes. Here, we introduce a new statistic for measuring codon selection, the Adaptive Codon Enrichment (ACE).

Results: This statistic represents codon usage bias in terms of a probabilistic distribution, quantifying the extent that preferred codons are over-represented in the gene of interest relative to the mean and variance that would result from stochastic sampling of codons.

View Article and Find Full Text PDF

Haemophilus ducreyi, the etiologic agent of chancroid, expresses variants of several key virulence factors. While previous reports suggested that H. ducreyi strains formed two clonal populations, the differences between, and diversity within, these populations were unclear.

View Article and Find Full Text PDF

Because the properties of horizontally-transferred genes will reflect the mutational proclivities of their donor genomes, they often show atypical compositional properties relative to native genes. Parametric methods use these discrepancies to identify bacterial genes recently acquired by horizontal transfer. However, compositional patterns of native genes vary stochastically, leaving no clear boundary between typical and atypical genes.

View Article and Find Full Text PDF

Evolutionary relationships among species are often assumed to be fundamentally unambiguous, where genes within a genome are thought to evolve in concert and phylogenetic incongruence between individual orthologs is attributed to idiosyncrasies in their evolution. We have identified substantial incongruence between the phylogenies of orthologous genes in Escherichia, Salmonella, and Citrobacter, or E. coli, E.

View Article and Find Full Text PDF

Mycobacteriophages are viruses that infect mycobacterial hosts. Expansion of a collection of sequenced phage genomes to a total of 60-all infecting a common bacterial host-provides further insight into their diversity and evolution. Of the 60 phage genomes, 55 can be grouped into nine clusters according to their nucleotide sequence similarities, 5 of which can be further divided into subclusters; 5 genomes do not cluster with other phages.

View Article and Find Full Text PDF

How do bacterial cells mediate effective cooperation? A new paper suggests two routes: converting the uninitiated to their cause by lateral gene transfer, and enforcing cooperative behavior by killing revertants.

View Article and Find Full Text PDF

While the recognition of genomic islands can be a powerful mechanism for identifying genes that distinguish related bacteria, few methods have been developed to identify them specifically. Rather, identification of islands often begins with cataloging individual genes likely to have been recently introduced into the genome; regions with many putative alien genes are then examined for other features suggestive of recent acquisition of a large genomic region. When few phylogenetic relatives are available, the identification of alien genes relies on their atypical features relative to the bulk of the genes in the genome.

View Article and Find Full Text PDF

Bacteria experience recombination in two ways. In the context of the Biological Species concept, allelic exchange purges genic variability within bacterial populations as gene exchange mediates selective sweeps. In contrast, horizontal gene transfer (HGT) increases the size of the population's pan-genome by providing an influx of novel genetic material.

View Article and Find Full Text PDF

Because bacterial recombination involves the occasional transfer of small DNA fragments between strains, different sets of niche-specific genes may be maintained in populations that freely recombine at other loci. Therefore, genetic isolation may be established at different times for different chromosomal regions during speciation as recombination at niche-specific genes is curtailed. To test this model, we separated sequence divergence into rate and time components, revealing that different regions of the Escherichia coli and Salmonella enterica chromosomes diverged over a approximately 70-million-year period.

View Article and Find Full Text PDF

Most parametric methods for detecting foreign genes in bacterial genomes use a scoring function that measures the atypicality of a gene with respect to the bulk of the genome. Genes whose features are sufficiently atypical-lying beyond a threshold value-are deemed foreign. Yet these methods fail when the range of features of donor genomes overlaps with that of the recipient genome, leading to misclassification of foreign and native genes; existing parametric methods choose threshold parameters to balance these error rates.

View Article and Find Full Text PDF

Cyanobacteriophage Syn9 is a large, contractile-tailed bacteriophage infecting the widespread, numerically dominant marine cyanobacteria of the genera Prochlorococcus and Synechococcus. Its 177,300 bp genome sequence encodes 226 putative proteins and six tRNAs. Experimental and computational analyses identified genes likely involved in virion formation, nucleotide synthesis, and DNA replication and repair.

View Article and Find Full Text PDF

Predation from intestinal amoebae may provide selective pressure for the maintenance of high genetic diversity at the Salmonella enterica rfb locus, whereby serovars better escape predators in particular environments depending on the O-antigens they express. Here, the hypothesis that amoebae from a particular intestinal environment collectively prefer one serovar over another is tested. Collections of Acanthamoeba, Tetramitus, Naegleria and Hartmannella were isolated from the intestinal tracts of several vertebrate hosts, including bullfrog tadpoles, goldfish, turtles and bearded dragons, and their feeding preferences were determined.

View Article and Find Full Text PDF