Publications by authors named "Jeffrey Enders"

Protozoal diarrhea caused by Tritrichomonas foetus (blagburni) is a prevalent, lifelong, and globally distributed burden in domestic cats. Treatment is limited to the use of 5-nitroimidazoles and treatment failure is common. The repurposed gold salt compound auranofin has killing activity against diverse protozoa in vitro but evidence of efficacy in naturally occurring protozoal infections is lacking.

View Article and Find Full Text PDF

A community engaged research (CER) approach was used to provide an exposure assessment of poly- and perfluorinated (PFAS) compounds in North Carolina residential drinking water. Working in concert with community partners, who acted as liaisons to local residents, samples were collected by North Carolina residents from three different locations along the Cape Fear River basin: upper, middle, and lower areas of the river. Residents collected either drinking water samples from their homes or recreational water samples from near their residence that were then submitted by the community partners for PFAS analysis.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are persistent, bioaccumulative chemicals that can be toxic at very low levels. Many of these compounds have unusual chemical properties that can have a large impact on analytical methods intended to quantitate them. When analyzing environmental samples, concentrating extraction eluents can greatly increase the sensitivity of PFAS extraction and analysis workflows.

View Article and Find Full Text PDF

Rationale: The ability to perform absolute quantitation and non-targeted analysis on a single mass spectrometry instrument would be advantageous to many researchers studying per- and polyfluoroalkyl substances (PFAS). High-resolution accurate mass (HRAM) instrumentation (typically deployed for non-targeted work) carries several advantages over traditional triple quadrupole workflows when performing absolute quantitation. Processing this data using a vendor-neutral software would promote collaboration for these environmental studies.

View Article and Find Full Text PDF

Extracellular matrix (ECM) is a complex structure composed of bioactive molecules representative of the local tissue microenvironment. Decellularized ECM biomaterials harness these biomolecules for regenerative medicine applications. One potential therapeutic application is the use of vocal fold (VF) specific ECM to restore the VFs after injury.

View Article and Find Full Text PDF

Glucuronidation controls androgen levels in the prostate and the dysregulation of enzymes in this pathway is associated with castration resistant prostate cancer. UDP-glucose dehydrogenase (UGDH) produces UDP-glucuronate, the essential precursor for glucuronidation, and its expression is elevated in prostate cancer. We compared protein and metabolite levels relevant to the glucuronidation pathway in five prostate cancer patient-derived xenograft models paired with their isogenic counterparts that were selected for castration resistant (CR) recurrence.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are used extensively in commercial products. Their unusual solubility properties make them an ideal class of compounds for various applications. However, these same properties have led to significant contamination and bioaccumulation given their persistence in the environment.

View Article and Find Full Text PDF

Decellularized extracellular matrix (ECM) scaffolds derived from tissues and organs are complex biomaterials used in clinical and research applications. A number of decellularization protocols have been described for ECM biomaterials derivation, each adapted to a particular tissue and use, restricting comparisons among materials. One of the major sources of variability in ECM products comes from the tissue source and animal age.

View Article and Find Full Text PDF

The vocal fold lamina propria (VFLP), one of the outermost layers of the vocal fold (VF), is composed of tissue-specific extracellular matrix (ECM) proteins and is highly susceptible to injury. Various biomaterials have been clinically tested to treat voice disorders (e.g.

View Article and Find Full Text PDF

Ribose 5-phosphate isomerase type B (RPI-B) is a key enzyme of the pentose phosphate pathway that catalyzes the isomerization of ribose 5-phosphate (R5P) and ribulose 5-phosphate (Ru5P). Trypanosoma cruzi RPI-B (TcRPI-B) appears to be a suitable drug-target mainly due to: (i) its essentiality (as previously shown in other trypanosomatids), (ii) it does not present a homologue in mammalian genomes sequenced thus far, and (iii) it participates in the production of NADPH and nucleotide/nucleic acid synthesis that are critical for parasite cell survival. In this survey, we report on the competitive inhibition of TcRPI-B by a substrate - analogue inhibitor, Compound B (K = 5.

View Article and Find Full Text PDF

Adherence to prescribed antipsychotics is an ongoing problem. Traditionally, estimates of adherence have been made from patient interviews, pill counting and blood testing. A number of methods for the analysis of antipsychotics in blood have been reported for both therapeutic drug monitoring and postmortem testing for toxicity.

View Article and Find Full Text PDF

This data article is related to the research article entitled "Silver nanoparticles alter epithelial basement membrane integrity, cell adhesion molecule expression and TGF-beta secretion", available in the journal [1]. This Data in Brief consists of data that describe changes in the expression of basement membrane (BM)-associated genes and proteins in three non-transformed epithelial cell lines following acute (6 h) and chronic (24 h plus 7-day chase) exposure to silver nanoparticles (AgNPs). Human BEAS2B (lung), MCF10AI (breast), and CCD-18Co (colon) cultured epithelia were analyzed for protein expression by LC-MS/MS and for gene expression by pathway-focused QRT-PCR arrays of 168 focal adhesion, integrin, and extracellular matrix (ECM) genes known to be localized to the plasma membrane, the BM/ECM, or secreted into the extracellular space.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) are widely used in consumer and pharmaceutical products due to their antipathogenic properties. However, safety concerns have been raised due to their bioactive properties. While reports have demonstrated AgNPs can embed within the extracellular matrix, their effects on basement membrane (BM) production, integrin engagement, and tissue-integrity are not well-defined.

View Article and Find Full Text PDF

We use shotgun proteomics to identify biomarkers of diagnostic and prognostic value in individuals diagnosed with amyotrophic lateral sclerosis. Matched cerebrospinal and plasma fluids were subjected to abundant protein depletion and analyzed by nano-flow liquid chromatography high resolution tandem mass spectrometry. Label free quantitation was used to identify differential proteins between individuals with ALS (n = 33) and healthy controls (n = 30) in both fluids.

View Article and Find Full Text PDF

Reports have suggested that patients with mental health disorders including major depressive disorder and schizophrenia have dramatically low adherence levels to prescribed medications. Patients on haloperidol (Haldol®) therapy, regardless of their disease, were found to have higher adherence levels-though still strikingly low. This work shows that high levels of the glucuronidated form of haloperidol are present in patient urine samples.

View Article and Find Full Text PDF

Background: While validation of analytical (LC-MS/MS) methods has been documented in any number of articles and reference texts, the optimal design and subsequent validation of a method for over 30 analytes presents special challenges. Conventional approaches to calibration curves, controls, and run time are not tenable in such methods. This report details the practical aspects of designing and implementing such a method in accordance with College of American Pathologists validation criteria.

View Article and Find Full Text PDF

Poklis and Backer published a survey of the concentrations of fentanyl and norfentanyl that could be expected in urine from patients using Duragesic, a transdermal fentanyl patch. That study employed a relatively small number of patient data points and analysis by Gas Chromatography/Mass Spectrometry. This work examines a larger population of patient positives for fentanyl and norfentanyl to determine whether more than a decade later the original report remains accurate in predicting the range and median levels of fentanyl and norfentanyl concentrations physicians can expect to see from their patients.

View Article and Find Full Text PDF

Oral fluid testing to assist in the assessment of treatment adherence for chronic pain patients is attractive for a number of reasons. However, efforts focused on interpreting patient results have been modest when compared to urine drug testing. This work details a retrospective approach developed to transform and normalize oral fluid testing results to provide a historical picture of patient values in this important test fluid.

View Article and Find Full Text PDF

To determine the true enantiomeric composition of methamphetamine urine drug testing results, chiral separation of dextro (D) and levo (L) enantiomers is necessary. While enantiomeric separation of methamphetamine has traditionally been accomplished using gas chromatography-mass spectrometry (GC-MS), chiral separation of D- and L-methamphetamine by chiral stationary phase (CSP) liquid chromatography-mass spectrometry/mass spectrometry (LC-MS-MS) has proved more reliable. Chirally selective detection of methamphetamine by GC-MS is often performed using L-N-trifluoroacetyl-prolyl chloride (TPC).

View Article and Find Full Text PDF

Opioid testing represents a dominant share of the market in pain management clinical testing facilities. Testing of this drug class in oral fluid (OF) has begun to rise in popularity. OF analysis has traditionally required extensive clean-up protocols and sample concentration, which can be avoided.

View Article and Find Full Text PDF

To address the challenges of tracking the multitude of signaling molecules and metabolites that is the basis of biological complexity, we describe a strategy to expand the analytical techniques for dynamic systems biology. Using microfluidics, online desalting, and mass spectrometry technologies, we constructed and validated a platform well suited for sampling the cellular microenvironment with high temporal resolution. Our platform achieves success in: automated cellular stimulation and microenvironment control; reduced non-specific adsorption to polydimethylsiloxane due to surface passivation; real-time online sample collection; near real-time sample preparation for salt removal; and real-time online mass spectrometry.

View Article and Find Full Text PDF

Current desalination techniques for mass spectrometry-based protocols are problematic for performing temporal response studies where increased temporal resolution requires small samples and faster sampling frequencies, which greatly increases the number of samples and sample preparation time. These challenges are pertinent to cellular dynamics experiments, where it is important to sample the biological system frequently and with as little sample waste as possible. To address these needs, we present a dual-column online solid phase extraction (SPE) approach capable of preconcentrating and preparing a constantly perfusing sample stream, with minimal to no sample loss.

View Article and Find Full Text PDF