Quantum error correction (QEC) provides a practical path to fault-tolerant quantum computing through scaling to large qubit numbers, assuming that physical errors are sufficiently uncorrelated in time and space. In superconducting qubit arrays, high-energy impact events can produce correlated errors, violating this key assumption. Following such an event, phonons with energy above the superconducting gap propagate throughout the device substrate, which in turn generate a temporary surge in quasiparticle (QP) density throughout the array.
View Article and Find Full Text PDFUndesired coupling to the surrounding environment destroys long-range correlations in quantum processors and hinders coherent evolution in the nominally available computational space. This noise is an outstanding challenge when leveraging the computation power of near-term quantum processors. It has been shown that benchmarking random circuit sampling with cross-entropy benchmarking can provide an estimate of the effective size of the Hilbert space coherently available.
View Article and Find Full Text PDFExplor Res Clin Soc Pharm
December 2024
Nursing medication administration is an integral, albeit time consuming component of a nursing shift. Automated dispensing cabinets (ADCs) are a medicines management solution designed to improve both efficiency and patient safety. This study aimed to evaluate the time taken to undertake a medication round including the number of locations visited to retrieve medicines, across four different clinical specialties within one hospital.
View Article and Find Full Text PDFExplor Res Clin Soc Pharm
June 2024
Use of automated dispensing cabinets (ADCs) is increasing in hospital settings. ADCs bring various potential benefits, among which are improvements to patient safety and reduction of medication errors. A core function of ADCs is to prevent medication stock outs by triggering an order when stock is reaching low levels.
View Article and Find Full Text PDFUnderstanding universal aspects of quantum dynamics is an unresolved problem in statistical mechanics. In particular, the spin dynamics of the one-dimensional Heisenberg model were conjectured as to belong to the Kardar-Parisi-Zhang (KPZ) universality class based on the scaling of the infinite-temperature spin-spin correlation function. In a chain of 46 superconducting qubits, we studied the probability distribution of the magnetization transferred across the chain's center, [Formula: see text].
View Article and Find Full Text PDFEngineered dissipative reservoirs have the potential to steer many-body quantum systems toward correlated steady states useful for quantum simulation of high-temperature superconductivity or quantum magnetism. Using up to 49 superconducting qubits, we prepared low-energy states of the transverse-field Ising model through coupling to dissipative auxiliary qubits. In one dimension, we observed long-range quantum correlations and a ground-state fidelity of 0.
View Article and Find Full Text PDFDancing is one way of maintaining an active lifestyle, and online dance interventions in group settings can be a solution when in-person classes are impossible. This study investigated the feasibility and potential clinical effects of an online dance program for older adults with and without Parkinson disease (PD). Participants attended 2 weekly dance classes in the same videoconference room for 2 months.
View Article and Find Full Text PDFBackground: Gait impairments in Parkinson's disease (PD) limit independence and quality of life. While dance-based interventions could improve gait, further studies are needed to determine if the benefits generalise to different terrains and when dual-tasking. The aim was to assess the effects of a dance intervention, based on the Dance for PD® (DfPD®) program, on gait under different dual-tasks (verbal fluency, serial subtraction) and surfaces (even, uneven), and to determine if a larger scale follow-up RCT is warranted.
View Article and Find Full Text PDFSystems of correlated particles appear in many fields of modern science and represent some of the most intractable computational problems in nature. The computational challenge in these systems arises when interactions become comparable to other energy scales, which makes the state of each particle depend on all other particles. The lack of general solutions for the three-body problem and acceptable theory for strongly correlated electrons shows that our understanding of correlated systems fades when the particle number or the interaction strength increases.
View Article and Find Full Text PDFInherent symmetry of a quantum system may protect its otherwise fragile states. Leveraging such protection requires testing its robustness against uncontrolled environmental interactions. Using 47 superconducting qubits, we implement the one-dimensional kicked Ising model, which exhibits nonlocal Majorana edge modes (MEMs) with [Formula: see text] parity symmetry.
View Article and Find Full Text PDFThe discovery of topological order has revised the understanding of quantum matter and provided the theoretical foundation for many quantum error–correcting codes. Realizing topologically ordered states has proven to be challenging in both condensed matter and synthetic quantum systems. We prepared the ground state of the toric code Hamiltonian using an efficient quantum circuit on a superconducting quantum processor.
View Article and Find Full Text PDFQuantum many-body systems display rich phase structure in their low-temperature equilibrium states. However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC).
View Article and Find Full Text PDFA promising approach to study condensed-matter systems is to simulate them on an engineered quantum platform. However, the accuracy needed to outperform classical methods has not been achieved so far. Here, using 18 superconducting qubits, we provide an experimental blueprint for an accurate condensed-matter simulator and demonstrate how to investigate fundamental electronic properties.
View Article and Find Full Text PDFQuantum computing can become scalable through error correction, but logical error rates only decrease with system size when physical errors are sufficiently uncorrelated. During computation, unused high energy levels of the qubits can become excited, creating leakage states that are long-lived and mobile. Particularly for superconducting transmon qubits, this leakage opens a path to errors that are correlated in space and time.
View Article and Find Full Text PDFPhys Rev Lett
September 2020
Quantum algorithms offer a dramatic speedup for computational problems in material science and chemistry. However, any near-term realizations of these algorithms will need to be optimized to fit within the finite resources offered by existing noisy hardware. Here, taking advantage of the adjustable coupling of gmon qubits, we demonstrate a continuous two-qubit gate set that can provide a threefold reduction in circuit depth as compared to a standard decomposition.
View Article and Find Full Text PDFBackground: Clinically, individuals diagnosed with Parkinson disease (PD) present several symptoms that impact on their functional independence and quality of life. While there is accumulating evidence supporting dance as an effective symptom management option, few studies have objectively assessed these benefits, particularly related to the Dance for Parkinson's Disease (DfPD) program.
Aim: The aim of this study was to explore the effects of DfPD-based dance classes on disease-related symptoms, fine-manual dexterity and functional mobility in people with PD.
Background: This study investigated the relationship between smoking and hearing loss and deafness (HLD) and whether the relationship is modified by genetic variation. Data for these analyses was from the subset of Japanese American families collected as part of the American Diabetes Association Genetics of Non-insulin Dependent Diabetes Mellitus study. Logistic regression with generalized estimating equations assessed the relationship between HLD and smoking.
View Article and Find Full Text PDFWe demonstrate diabatic two-qubit gates with Pauli error rates down to 4.3(2)×10^{-3} in as fast as 18 ns using frequency-tunable superconducting qubits. This is achieved by synchronizing the entangling parameters with minima in the leakage channel.
View Article and Find Full Text PDFThe promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor. A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits to create quantum states on 53 qubits, corresponding to a computational state-space of dimension 2 (about 10).
View Article and Find Full Text PDFNeuroRehabilitation
January 2020
Background: While dance may improve motor features in Parkinson's disease (PD), it is not yet clear if the benefits extend to non-motor features.
Objective: To determine whether dance classes based on Dance for PD®, improve cognition, psychological symptoms and Quality of Life (QoL) in PD.
Methods: Participants were allocated to a Dance Group (DG; n = 17) or Control Group (CG: n = 16).
Dance-based interventions have been proposed for the management of Parkinson's disease (PD) symptoms. This review critically appraises and synthesises the research on the effects of dance interventions on gait, cognition and dual-tasking in PD, through a meta-analysis of peer-reviewed literature from seven databases. Eligible studies included people with PD, used a parallel-group or cohort design with a dance-based intervention, reported outcome measures of gait, cognition or dual-tasking, and were published in English up until September 2017.
View Article and Find Full Text PDFSuperconducting qubits are an attractive platform for quantum computing since they have demonstrated high-fidelity quantum gates and extensibility to modest system sizes. Nonetheless, an outstanding challenge is stabilizing their energy-relaxation times, which can fluctuate unpredictably in frequency and time. Here, we use qubits as spectral and temporal probes of individual two-level-system defects to provide direct evidence that they are responsible for the largest fluctuations.
View Article and Find Full Text PDFA key step toward demonstrating a quantum system that can address difficult problems in physics and chemistry will be performing a computation beyond the capabilities of any classical computer, thus achieving so-called quantum supremacy. In this study, we used nine superconducting qubits to demonstrate a promising path toward quantum supremacy. By individually tuning the qubit parameters, we were able to generate thousands of distinct Hamiltonian evolutions and probe the output probabilities.
View Article and Find Full Text PDFAlthough there has been a significant amount of research focused on the pathophysiology of spinal cord injury (SCI), there is limited information on the consequences of SCI on remote organs. SCI can produce significant effects on a variety of organ systems, including the gastrointestinal tract. Patients with SCI often suffer from severe, debilitating bowel dysfunction in addition to their physical disabilities, which is of major concern for these individuals because of the adverse impact on their quality of life.
View Article and Find Full Text PDF