Purpose: The purpose of the study is to develop a quantitative method for the relaxation properties with a reduced radio frequency (RF) power deposition by combining magnetic resonance fingerprinting (MRF) technique with quick echo splitting NMR imaging technique (QUEST).
Methods: A QUEST-based MRF sequence was implemented to acquire high-order echoes by increasing the gaps between RF pulses. Bloch simulations were used to calculate a dictionary containing the range of physically plausible signal evolutions using a range of T and T values based on the pulse sequence.
Purpose: In radial imaging, projections may become "miscentered" due to gradient errors such as delays and eddy currents. These errors may result in image artifacts and can disrupt the reliability of direct current (DC) navigation. The proposed parallel imaging-based technique retrospectively estimates trajectory error from miscentered radial data without extra acquisitions, hardware, or sequence modification.
View Article and Find Full Text PDFPurpose: The Dixon techniques provide uniform water-fat separation but require multiple image sets, which extend the overall acquisition time. Here, an alternative rapid single acquisition method, lipid elimination with an echo-shifting N/2-ghost acquisition (LEENA), was introduced.
Methods: The LEENA method utilized a fast imaging with steady-state free precession sequence to obtain a single k-space dataset in which successive k-space lines are acquired to allow the fat magnetization to precess 180°.
Purpose: A prototype wireless guidance device using single sideband amplitude modulation (SSB) is presented for a 1.5T magnetic resonance imaging system.
Methods: The device contained three fiducial markers each mounted to an independent receiver coil equipped with wireless SSB technology.
Magnetic resonance is an exceptionally powerful and versatile measurement technique. The basic structure of a magnetic resonance experiment has remained largely unchanged for almost 50 years, being mainly restricted to the qualitative probing of only a limited set of the properties that can in principle be accessed by this technique. Here we introduce an approach to data acquisition, post-processing and visualization--which we term 'magnetic resonance fingerprinting' (MRF)--that permits the simultaneous non-invasive quantification of multiple important properties of a material or tissue.
View Article and Find Full Text PDFMultichannel transmission has the potential to improve many aspects of MRI through a new paradigm in excitation. In this study, multichannel transmission is used to address the effects that variations in B(0) homogeneity have on fat-saturation preparation through the use of the frequency, phase, and amplitude degrees of freedom afforded by independent transmission channels. B(1) homogeneity is intrinsically included via use of coil sensitivities in calculations.
View Article and Find Full Text PDFResolution enhanced T(1)-insensitive steady-state imaging (RE-TOSSI) is a new MRI pulse sequence for the generation of rapid T(2) contrast with high spatial resolution. TOSSI provides T(2) contrast by using nonequally spaced inversion pulses throughout a balanced steady-state free precession (SSFP) acquisition. In RE-TOSSI, these energy and time intensive adiabatic inversion pulses and associated magnetization preparation are removed from TOSSI after acquisition of the data around the center of k-space.
View Article and Find Full Text PDFPrevious work has shown that the use of radial GRAPPA for the reconstruction of undersampled real-time free-breathing cardiac data allows for frame rates of up to 30 images/s. It is well known that the spiral trajectory offers a higher scan efficiency compared to radial trajectories. For this reason, we have developed a novel through-time spiral GRAPPA method and demonstrate its application to real-time cardiac imaging.
View Article and Find Full Text PDFWe present a novel approach to simultaneously measure, in vivo, noninvasively, glucose and oxygen consumption via Deuterium Magnetic Resonance (DMR). Mice are administered deuteriated glucose by intravenous injection. The rate of formation of nascent (deuteriated) mitochondrial water is then measured via DMR.
View Article and Find Full Text PDFMultislice parallel imaging involves the simultaneous sampling of multiple parallel slices which are subsequently separated using parallel imaging reconstruction. The CAIPIRINHA technique improves this reconstruction by manipulating the phase of the RF excitation pulses to shift the aliasing pattern such that there is less aliasing energy to be reconstructed. In this work, it is shown that combining the phase manipulation used in CAIPIRINHA with a non-Cartesian (radial) sampling scheme further decreases the aliasing energy for the parallel imaging algorithm to reconstruct, thereby further increasing the degree to which a multi-channel receiver array can be utilized for parallel imaging acceleration.
View Article and Find Full Text PDFTranslational research plays a vital role in understanding the underlying pathophysiology of human diseases, and hence development of new diagnostic and therapeutic options for their management. After creating an animal disease model, pathophysiologic changes and effects of a therapeutic intervention on them are often evaluated on the animals using immunohistologic or imaging techniques. In contrast to the immunohistologic techniques, the imaging techniques are noninvasive and hence can be used to investigate the whole animal, oftentimes in a single exam which provides opportunities to perform longitudinal studies and dynamic imaging of the same subject, and hence minimizes the experimental variability, requirement for the number of animals, and the time to perform a given experiment.
View Article and Find Full Text PDFHypointense band artifacts occur at intersections of nonparallel imaging planes in rapidly acquired MR images; quantitative or numerical analysis of these bands and strategies to mitigate their appearance have largely gone unexplored. The magnetization evolution in the different regions of multiplanar images was simulated for three common rapid steady-state techniques (spoiled gradient echo, steady state free precession, balanced steady state free precession). Saturation banding was found to be highly dependent on the pulse sequence, acquisition time, and phase-encoding order.
View Article and Find Full Text PDFPurpose: To test the hypothesis that magnetic resonance (MR) imaging can be used to monitor both intraparenchymal injection of NaCl solution and subsequent radiofrequency ablation (RFA) within tissues pretreated with NaCl, report the low- and high-field-strength MR appearance of NaCl-enhanced RFAs, and compare MR findings with pathologic findings.
Materials And Methods: Ten ex vivo calf liver specimens were injected with saturated NaCl (seven were mixed with methylene blue during MR fluoroscopic monitoring) and reexamined with fast imaging with steady-state progression (FISP), true FISP, reversed FISP (PSIF), and fast spin-echo T2-weighted MR sequences. The NaCl-to-liver contrast-to-noise ratio (CNR) was calculated for various sequences, and CNRs were compared with the Student t test.
Purpose: The goal of this study was to determine the effect of contrast media on the signal behavior of single-shot echo planar imaging (ssEPI) used for abdominal diffusion imaging.
Materials And Methods: The signal of an ssEPI spin echo sequence in a water phantom with varying concentrations of gadolinium was modeled with Bloch equations and the predicted behavior validated on a phantom at 1.5T.
IEEE Trans Med Imaging
February 2010
It is a well-known property in Fourier transform magnetic resonance imaging (MRI) that rigid body translational motion in image space results in linear phase accumulation in k -space. This work describes Multiple Overlapping k-space Junctions for Investigating Translating Objects (MOJITO), a correction scheme based on phase differences at trajectory intersections caused by 2-D alterations in the position of an object during MR imaging. The algorithm allows both detection and correction of motion artifacts caused by 2-D rigid body translational motion.
View Article and Find Full Text PDFPurpose: To describe a new method for performing dark blood (DB) magnetization preparation in TrueFISP (bSSFP) and apply the technique to high-resolution carotid artery imaging.
Materials And Methods: The developed method (HEFEWEIZEN) provides directional flow suppression, while preserving bSSFP contrast, by periodically applying spatial saturation in short repetition time (TR) TrueFISP. Steady-state free precession (SSFP) conditions are maintained throughout the acquisition for the imaging slice magnetization.
Rationale And Objectives: The aim of this study was to investigate whether a respiratory biofeedback system could increase navigator efficiency and maintain image quality compared to conventional respiratory-gated magnetic resonance coronary angiography (MRCA).
Materials And Methods: Eighteen healthy volunteers underwent MRCA using three different respiratory-gating protocols. A conventional expiratory free-breathing (FB) sequence was compared to two approaches using navigator echo biofeedback (NEB), a midinspiratory approach (NEBin) and an expiratory approach (NEBex).
Objective: The purpose of this article is to introduce a technique for transrectal drainage of deep pelvic abscesses performed under interactive MRI guidance.
Conclusion: A new method for triorthogonal image plane MRI guidance was developed and used to interactively monitor the puncture needle on continuously updated sets of adjustable three-plane images. The merits and limitations of the technique are highlighted and the patient population that is likely to benefit from this approach is suggested.
Conventional Cartesian parallel MRI methods are limited to the sensitivity variations provided by the underlying receiver coil array in the dimension in which the data reduction is carried out, namely, the phase-encoding directions. However, in this work an acquisition strategy is presented that takes advantage of sensitivity variations in the readout direction, thus improving the parallel imaging reconstruction process. This is achieved by employing rapidly oscillating phase-encoding gradients during the actual readout.
View Article and Find Full Text PDFThis study combines fast magnetic resonance imaging (MRI) and model simulation of tissue thermal ablation for monitoring and predicting the dynamics of lesion size for tumor destruction. In vivo experiments were conducted using radiofrequency (RF) thermal ablation in paraspinal muscle of rabbit with a VX2 tumor. Before ablation, turbo-spin echo (TSE) images visualized the 3-D tumor (necrotic core and tumor periphery) and surrounding normal tissue.
View Article and Find Full Text PDFJ Magn Reson Imaging
February 2008
The use of MRI for intervention and real-time imaging has seen many changes since its inception in the late 1980s. Initial interventional MRI researchers made great strides in building this new specialty, creating devices, sequences, and applications to push the field forward. More recently, researchers have gained more access to the systems themselves, and have taken advantage of this situation to create truly interactive interventional systems.
View Article and Find Full Text PDFIntroduction: High-field magnetic resonance imaging (MRI) is an emerging technique that provides a powerful, non-invasive tool for in vivo studies of cancer therapy in animal models. Photodynamic therapy (PDT) is a relatively new treatment modality for prostate cancer, the second leading cause of cancer mortality in American males. The goal of this study was to evaluate the response of human prostate tumor cells growing as xenografts in athymic nude mice to Pc 4-sensitized PDT.
View Article and Find Full Text PDFObjective: The objective of our study was to evaluate intraoperative low-field MRI for the frequency and duration of imaging sessions needed during surgery, the direct additional procedure time attributable to imaging, and the proportion of cases in which information provided by intraoperative MRI led to a change in the procedure or otherwise was deemed valuable by operating surgeons.
Materials And Methods: One hundred twenty-two patients (65 males, 57 females; age range, 6-77 years; mean age, 43.8 years) underwent 130 neurosurgical and ENT procedures (106 craniotomies, 17 transsphenoidal pituitary resections, three biopsies, three intracranial cyst aspirations or injections, and one skull base resection) in a specially designed surgical MRI suite equipped with a 0.
Purpose: We used inflammatory breast cancer (IBC) as a model disease to investigate biological changes associated with an antiangiogenesis agent, SU5416, combined with doxorubicin.
Experimental Design: Patients with stage IIIB or IV IBC were treated neoadjuvantly with the combination of SU5416 and doxorubicin for induction therapy. The dose of SU5416 (administered on days 1 and 4, every 3 weeks) and doxorubicin (administered on day 1 every 3 weeks) were escalated in cohorts of three patients starting at 110 and 60 mg/m2, respectively, for a total of five cycles leading up to mastectomy.
Image signal-to-noise ratio (SNR) limits many MRI applications. Here we propose a method to improve SNR based on continuous sampling (CS) during each TR without significant increases in acquisition time. The general concept of CS is defined here as sampling the NMR signal immediately after slice excitation including ramp times, both the dephase and rephase lobes, the phase-encoding (PE) gradient application, and the slice refocusing gradient.
View Article and Find Full Text PDF