We recently reported on the discovery of AMG 232, a potent and selective piperidinone inhibitor of the MDM2-p53 interaction. AMG 232 is being evaluated in human clinical trials for cancer. Continued exploration of the N-alkyl substituent of this series, in an effort to optimize interactions with the MDM2 glycine-58 shelf region, led to the discovery of sulfonamides such as compounds 31 and 38 that have similar potency, hepatocyte stability and rat pharmacokinetic properties to AMG 232.
View Article and Find Full Text PDFWe describe the structural optimization of a lead compound 1 that exhibits dual inhibitory activities against FLT3 and CDK4. A series of pyrido[4',3':4,5]pyrrolo[2,3-d]pyrimidine derivatives was synthesized, and SAR analysis, using cell-based assays, led to the discovery of 28 (AMG 925), a potent and orally bioavailable dual inhibitor of CDK4 and FLT3, including many FLT3 mutants reported to date. Compound 28 inhibits the proliferation of a panel of human tumor cell lines including Colo205 (Rb(+)) and U937 (FLT3(WT)) and induced cell death in MOLM13 (FLT3(ITD)) and even in MOLM13 (FLT3(ITD, D835Y)), which exhibits resistance to a number of FLT3 inhibitors currently under clinical development.
View Article and Find Full Text PDFWe recently reported the discovery of AM-8553 (1), a potent and selective piperidinone inhibitor of the MDM2-p53 interaction. Continued research investigation of the N-alkyl substituent of this series, focused in particular on a previously underutilized interaction in a shallow cleft on the MDM2 surface, led to the discovery of a one-carbon tethered sulfone which gave rise to substantial improvements in biochemical and cellular potency. Further investigation produced AMG 232 (2), which is currently being evaluated in human clinical trials for the treatment of cancer.
View Article and Find Full Text PDFStructure-based rational design led to the discovery of novel inhibitors of the MDM2-p53 protein-protein interaction. The affinity of these compounds for MDM2 was improved through conformational control of both the piperidinone ring and the appended N-alkyl substituent. Optimization afforded 29 (AM-8553), a potent and selective MDM2 inhibitor with excellent pharmacokinetic properties and in vivo efficacy.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2008
A series of imidazole derivatives have been designed and optimized for CXCR3 antagonism, pharmacokinetic properties, and reduced formation of glutathione conjugates. Our efforts led to the discovery of potent CXCR3 antagonists with good pharmacokinetic properties. These compounds are useful tools for in vivo studies of CXCR3 function.
View Article and Find Full Text PDFA series of six-six and six-five fused heterocyclic CXCR3 antagonists has been synthesized and their activities evaluated in an [(125)I]-IP-10 displacement assay and an ITAC mediated in vitro cell migration assay. The pharmacokinetic properties of several top compounds have also been studied. This effort led to the discovery of compounds with increased potency and improved pharmacokinetic properties that could serve as useful tools to study the role of the CXCR3 receptor in vivo.
View Article and Find Full Text PDFA series of coumarin and pyranocoumarin analogues were evaluated in vitro for antiviral efficacy against measles virus (MV), strain Chicago. Of the 22 compounds tested for inhibition, six were found to have selectivity indices greater than 10. These were compounds 5-hydroxy-7-propionyloxy-4-propylcoumarin (2a), 5,7-bis(tosyloxy)-4-propylcoumarin (7); 5-hydroxy-4-propyl-7-tosyloxy-coumarin (8); 6,6-dimethyl-9-propionyloxy-4-propyl-2H,6H-benzo[1,2-b:3,4-b']dipyran-2-one (9); 6,6-dimethyl-9-pivaloyloxy-4-propyl-2H,6H-benzo[1,2-b:3,4-b']dipyran-2-one (10); and 7,8-cis-10,11,12-trans-4-propyl-6,6,10,11-tetramethyl-7,8,9-trihydroxy-2H,6H,12H-benzo[1 ,2-b:3,4-b':5,6-b'']tripyran-2-one (18).
View Article and Find Full Text PDF