Publications by authors named "Jeffrey Dalsin"

Urinary catheters and stents are frequently prone to catheter-associated urinary tract infections (CAUTI) through biofilm formation. Several strategies have been evaluated in search of a stent coating to reliably prevent adherence of bacteria and biofilm. Previous and research with methoxylated polyethylene glycol 3,4-dihydroxyphenylalanine (DOPA) copolymer as a candidate coating showed promising results to reduce the bacterial attachment.

View Article and Find Full Text PDF

Purpose: A previous study showed decreased uropathogen adherence using a novel anti-fouling coating consisting of mussel adhesive protein mimics conjugated to poly(ethylene glycol). We assessed the ability of methoxy polyethylene glycol-dihydroxyphenylalanine (Nerites Corp. Ltd.

View Article and Find Full Text PDF

Aqueous biocompatible tribosystems are desirable for a variety of tissue-contacting medical devices. L-3,4-dihydroxyphenylalanine (DOPA) and lysine (K) peptide mimics of mussel adhesive proteins strongly interact with surfaces and may be useful for surface attachment of lubricating polymers in tribosystems. Here, we describe a significant improvement in lubrication properties of poly (dimethylsiloxane) (PDMS) surfaces when modified with PEG-DOPA-K.

View Article and Find Full Text PDF

Background And Purpose: Success in the prevention of urinary device infections has been elusive, largely due to multiple bacterial attachment strategies and the development of urinary conditioning films. We investigated a novel anti-fouling coating consisting of mussel adhesive protein mimics conjugated to polyethylene glycol (mPEG-DOPA(3)) for its potential to resist conditioning film formation and uropathogen attachment in human urine.

Methods: Model TiO(2) -coated silicon disks ( approximately 75 mm(2)) were either coated with mPEG-DOPA(3) or left uncoated and sterilized using ethylene oxide gas.

View Article and Find Full Text PDF

The marine antifouling and fouling-release performance of titanium surfaces coated with a bio-inspired polymer was investigated. The polymer consisted of methoxy-terminated poly(ethylene glycol) (mPEG) conjugated to the adhesive amino acid l-3,4-dihydroxyphenylalanine (DOPA) and was chosen based on its successful resistance to protein and mammalian cell fouling. Biofouling assays for the settlement and release of the diatom Navicula perminuta and settlement, growth and release of zoospores and sporelings (young plants) of the green alga Ulva linza were carried out.

View Article and Find Full Text PDF

In this paper, we demonstrate the first use of a catecholic initiator for surface-initiated polymerization (SIP) from metal surfaces to create antifouling polymer coatings. A new bifunctional initiator inspired by mussel adhesive proteins was synthesized, which strongly adsorbs to Ti and 316L stainless steel (SS) substrates, providing an anchor for surface immobilization of grafted polymers. Surface-initiated atom transfer radical polymerization (SI-ATRP) was performed through the adsorbed biomimetic initiator to polymerize methyl methacrylate macromonomers with oligo(ethylene glycol) (OEG) side chains.

View Article and Find Full Text PDF

In the present study, we have utilized X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry (ELM), and optical waveguide lightmode spectroscopy (OWLS) to examine the surface adsorption and protein resistance behavior of bio-inspired polymers consisting of poly(ethylene glycol) (PEG) conjugated to peptide mimics of mussel adhesive proteins. Peptides containing up to three residues of 3,4-dihydroxyphenylalanine (DOPA), a key component of mussel adhesive proteins, were conjugated to monomethoxy-terminated PEG polymers. These mPEG-DOPA polymers were found to be highly adhesive to TiO2 surfaces, with quantitative XPS analysis providing useful insight into the binding mechanism.

View Article and Find Full Text PDF

A new biomimetic strategy for modification of biomaterial surfaces with poly(ethylene glycol) (PEG) was developed. The strategy exploits the adhesive characteristics of 3,4-dihydroxyphenylalanine (DOPA), an important component of mussel adhesive proteins, to anchor PEG onto surfaces, rendering the surfaces resistant to cell attachment. Linear monomethoxy-terminated PEGs were conjugated either to a single DOPA residue (mPEG-DOPA) or to the N-terminus of Ala-Lys-Pro-Ser-Tyr-Hyp-Hyp-Thr-DOPA-Lys (mPEG-MAPD), a decapeptide analogue of a protein found in Mytilus edulis adhesive plaques.

View Article and Find Full Text PDF

3,4-Dihydroxyphenylalanine (DOPA) residues are known for their ability to impart adhesive and curing properties to mussel adhesive proteins. In this paper, we report the preparation of linear and branched DOPA-modified poly(ethylene glycol)s (PEG-DOPAs) containing one to four DOPA endgroups. Gel permeation chromatography-multiple-angle laser light scattering analysis of methoxy-PEG-DOPA in the presence of oxidizing reagents (sodium periodate, horseradish peroxidase, and mushroom tyrosinase) revealed the formation of oligomers of methoxy-PEG-DOPA, presumably resulting from oxidative polymerization of DOPA endgroups.

View Article and Find Full Text PDF