Publications by authors named "Jeffrey D Serrill"

Article Synopsis
  • Mandelalides are complex natural compounds that inhibit mitochondrial ATP synthase, making them particularly toxic to cells with oxidative metabolism.
  • Mandelalide A activates the AMPK energy stress pathway, enhancing cell survival against ATP depletion, while its effectiveness varies based on specific genetic factors in cancer cells.
  • The combination of mandelalide A with erlotinib shows promise as a treatment strategy against certain NSCLC cells, indicating their potential for further pre-clinical evaluation as cancer therapies.
View Article and Find Full Text PDF

Osteosarcoma is the most common type of bone cancer in dogs and humans, with significant numbers of patients experiencing treatment failure and disease progression. In our search for new approaches to treat osteosarcoma, we previously detected multiple chaperone proteins in the surface-exposed proteome of canine osteosarcoma cells. In the present study, we characterized expression of representative chaperones and find evidence for stress adaptation in canine osteosarcoma cells relative to osteogenic progenitors from normal bone.

View Article and Find Full Text PDF

Coibamide A is a potent cancer cell toxin and one of a select group of natural products that inhibit protein entry into the secretory pathway via a direct inhibition of the Sec61 protein translocon. Many Sec61 client proteins are clinically relevant drug targets once trafficked to their final destination in or outside the cell, however the use of Sec61 inhibitors to block early biosynthesis of specific proteins is at a pre-clinical stage. In the present study we evaluated the action of coibamide A against human epidermal growth factor receptor (HER, ErbB) proteins in representative breast and lung cancer cell types.

View Article and Find Full Text PDF

Coibamide A (CbA) is a marine natural product with potent antiproliferative activity against human cancer cells and a unique selectivity profile. Despite promising antitumor activity, the mechanism of cytotoxicity and specific cellular target of CbA remain unknown. Here, we develop an optimized synthetic CbA photoaffinity probe (photo-CbA) and use it to demonstrate that CbA directly targets the Sec61α subunit of the Sec61 protein translocon.

View Article and Find Full Text PDF

The pancreas is composed of different cellular populations, organized into distinct functional units, including acinar clusters, islets of Langerhans, and the ductal system. As a result of research into diabetes, several optical techniques have been developed for the three-dimensional visualization of islet populations, so as to better understand their anatomical characteristics. These approaches are largely reliant on three-dimensional whole-mount immunofluorescence staining.

View Article and Find Full Text PDF

Cadherin-mediated cell-cell adhesion plays an important role in organ development and changes in cadherin expression are often linked to morphogenetic and pathogenic events. Cadherins interact with other intracellular components to form adherens junctions (AJs) and provide mechanical attachments between adjacent cells. E-cadherin (Cdh1) represents an integral component of these intercellular junctions.

View Article and Find Full Text PDF

Our understanding of autophagy and lysosomal function has been greatly enhanced by the discovery of natural product structures that can serve as chemical probes to reveal new patterns of signal transduction in cells. Coibamide A is a cytotoxic marine natural product that induces mTOR-independent autophagy as an adaptive stress response that precedes cell death. Autophagy-related (ATG) protein 5 (ATG5) is required for coibamide-induced autophagy but not required for coibamide-induced apoptosis.

View Article and Find Full Text PDF

Mandelalides A-D (1-4) are macrocyclic polyketides known to have an unusual bioactivity profile influenced by compound glycosylation and growth phase of cultured cells. The isolation and characterization of additional natural congeners, mandelalides E-L (5-12), and the supply of synthetic compounds 1 and 12, as well as seco-mandelalide A methyl ester (13), have now facilitated mechanism of action and structure-activity relationship studies. Glycosylated mandelalides are effective inhibitors of aerobic respiration in living cells.

View Article and Find Full Text PDF

Pactamycin is a bacteria-derived aminocyclitol antibiotic with a wide-range of biological activity. Its chemical structure and potent biological activities have made it an interesting lead compound for drug discovery and development. Despite its unusual chemical structure, many aspects of its formation in nature remain elusive.

View Article and Find Full Text PDF

Recollection of the tunicate source of the mandelalides has provided new and known analogues that have facilitated expanded analyses of the disputed cancer cytotoxicity of mandelalide A following a number of recent reported total syntheses. Using newly characterized mandelalide E, reisolated natural mandelalides B and C, and synthetic mandelalide A, the cytotoxicity of the mandelalides is demonstrated to be strongly influenced by compound glycosylation and assay cell density. Glycosylated mandelalides reduced the viability of human cancer cells cultured at a high starting density with a rank order of potency A > B ≫ E, yet display dramatically reduced cytotoxic efficacy against low density cultures.

View Article and Find Full Text PDF

The total synthesis of mandelalide A and its ring-expanded macrolide isomer isomandelalide A has been achieved. Unexpected high levels of cytotoxicity were observed with the ring-expanded isomandelalide A with a rank order of potency: mandelalide A > isomandelalide A > mandelalide B. Key aspects of the synthesis include Ag-catalyzed cyclizations (AgCC's) to construct both the THF and THP rings present in the macrocycle, diastereoselective Sharpless dihydroylation of a cis-enyne, and lithium acetylide coupling with a chiral epoxide.

View Article and Find Full Text PDF

Coibamide A is a cytotoxic lariat depsipeptide isolated from a rare cyanobacterium found within the marine reserve of Coiba National Park, Panama. Earlier testing of coibamide A in the National Cancer Institute in vitro 60 human tumor cell line panel (NCI-60) revealed potent anti-proliferative activity and a unique selectivity profile, potentially reflecting a new target or mechanism of action. In the present study we evaluated the antitumor activity of coibamide A in several functional cell-based assays and in vivo.

View Article and Find Full Text PDF

Two new apoptolidins, 2'-O-succinyl-apoptolidin A (11) and 3'-O-succinyl-apoptolidin A (12), were isolated from the culture broth of an Indonesian Amycolatopsis sp. ICBB 8242. These compounds inhibit the proliferation and viability of human H292 and HeLa cells.

View Article and Find Full Text PDF

Two new cyclic depsipeptides, companeramides A (1) and B (2), have been isolated from the phylogenetically characterized cyanobacterial collection that yielded the previously reported cancer cell toxin coibamide A (collected from Coiba Island, Panama). The planar structures of the companeramides, which contain 3-amino-2-methyl-7-octynoic acid (Amoya), hydroxy isovaleric acid (Hiva), and eight α-amino acid units, were established by NMR spectroscopy and mass spectrometry. The absolute configuration of each companeramide was assigned using a combination of Marfey's methodology and chiral-phase HPLC analysis of complete and partial hydrolysis products compared to commercial and synthesized standards.

View Article and Find Full Text PDF

Apoptolidin A was first isolated as a secondary metabolite of a Nocardiopsis sp. and is the founding member of a family of potential selective cancer cell toxins. We now report the isolation, production and pharmacological characterization of apoptolidins A and C from an alternate actinomycete producer, an Amycolatopsis sp.

View Article and Find Full Text PDF

Coibamide A is an N-methyl-stabilized depsipeptide that was isolated from a marine cyanobacterium as part of an International Cooperative Biodiversity Groups (ICBG) program based in Panama. Previous testing of coibamide A in the NCI in vitro 60 cancer cell line panel revealed a potent anti-proliferative response and "COMPARE-negative" profile indicative of a unique mechanism of action. We report that coibamide A is a more potent and efficacious cytotoxin than was previously appreciated, inducing concentration- and time-dependent cytotoxicity (EC50<100 nM) in human U87-MG and SF-295 glioblastoma cells and mouse embryonic fibroblasts (MEFs).

View Article and Find Full Text PDF