Publications by authors named "Jeffrey D Rinehart"

The spin relaxation of an Er tetranuclear single-molecule magnet, , (hdcCOT = hexahydrodicyclopentacyclooctatetraenide dianion), is modeled as a near-tetrahedral arrangement of Ising-type spins. Combining evidence from single-crystal X-ray diffraction, magnetometry, and computational techniques, the slow spin relaxation is interpreted as a consequence of symmetry restrictions imposed on quantum tunneling within the cluster core. The union of spin and spatial symmetries describe a ground state spin-spin coupled manifold wherein 16 eigenvectors generate the 3D quantum spin-space described by the vertices of a rhombic dodecahedron.

View Article and Find Full Text PDF

The design of molecular magnets has progressed greatly by taking advantage of the ability to impart successive perturbations and control vibronic transitions in 4f systems through the careful manipulation of the crystal field. Herein, we control the orientation and rigidity of two dinuclear ErCOT-based molecular magnets: the inversion-symmetric bridged [ErCOT(μ-Me)(THF)] () and the nearly linear Li[(ErCOT)(μ-Me)] (). The conserved anisotropy of the ErCOT synthetic unit facilitates the direction of the arrangement of its magnetic anisotropy for the purposes of generating controlled internal magnetic fields, improving control of the energetics and transition probabilities of the electronic angular momentum states with exchange biasing via dipolar coupling.

View Article and Find Full Text PDF

We present a wide-ranging interrogation of the border between single-molecule and solid-state magnetism through a study of erbium-based Ising-type magnetic compounds with a fixed magnetic unit, using three different charge-balancing cations as the means to modulate the crystal packing environment. Properties rooted in the isolated spin Hamiltonian remain fixed, yet careful observation of the dynamics reveals the breakdown of this approximation in a number of interesting ways. First, differences in crystal packing lead to a striking 3 orders of magnitude suppression in magnetic relaxation rates, indicating a rich interplay between intermolecular interactions governed by the anisotropic Ising lattice stabilization and localized slow magnetic relaxation driven by the spin-forbidden nature of quantum tunneling of the f-electron-based magnetization.

View Article and Find Full Text PDF

Magnetization is a common measurable for characterizing bulk, nanoscale, and molecular materials, which can be quantified to high precision as a function of an applied external field. These data provide detailed information about a material's electronic structure, phase purity, and impurities, though interpreting this data can be challenging due to many contributing factors. In sub-single-domain particles of a magnetic material, an inherently time-dependent rotation of the entire particle spin becomes possible.

View Article and Find Full Text PDF

The synthesis of iron oxide nanoparticles with control over size and shape has long been an area of research, with iron oleate being arguably the most successful precursor. Issues with reproducibility and versatility in iron oleate-based syntheses remain, however, in large part due to the mutable nature of its structure and stoichiometry. In this work, we characterize two new forms of iron oleate precursor that can be isolated in large quantities, show long-term stability, and have well-defined stoichiometry, leading to reproducible and predictable reactivity.

View Article and Find Full Text PDF

Dipolar coupling is rarely invoked as a driving force for slow relaxation dynamics in lanthanide-based single-molecule magnets, though it is often the strongest mechanism available for mediating inter-ion magnetic interactions in such species. Indeed, for multinuclear lanthanide complexes, the magnitude and anisotropy of the dipolar interaction can be considerable given their ability to form highly directional, high-moment ground states. Herein, we present a mono-, di-, and trinuclear erbium-based single-molecule magnet sequence, ([Er-TiPSCOT]) ( = 1-3), wherein a drastic reduction in the allowedness of magnetic relaxation pathways is rationalized within the framework of the dipole-dipole interactions between angular momentum quanta.

View Article and Find Full Text PDF

Sandwich complexes of lanthanides have recently attracted a considerable amount of interest due to their applications as Single Molecule Magnet (SMM). Herein, a comprehensive series of heteroleptic lanthanide sandwich complexes ligated by the cyclononatetraenyl (Cnt) and the cyclooctatetraenyl (Cot) ligand [Ln(Cot)(Cnt)] (Ln=Tb, Dy, Er, Ho, Yb, and Lu) is reported. The coordination behavior of the Cnt ligand has been investigated along the series and shows different coordination patterns in the solid-state depending on the size of the corresponding lanthanide ion without altering its overall anisotropy.

View Article and Find Full Text PDF

Melanin is ubiquitous in living organisms across different biological kingdoms of life, making it an important, natural biomaterial. Its presence in nature from microorganisms to higher animals and plants is attributed to the many functions of melanin, including pigmentation, radical scavenging, radiation protection, and thermal regulation. Generally, melanin is classified into five types-eumelanin, pheomelanin, neuromelanin, allomelanin, and pyomelanin-based on the various chemical precursors used in their biosynthesis.

View Article and Find Full Text PDF

The first examples of Co(ii) mesoionic carbene complexes (CoX2DippMIC2; X = Cl-, Br-, I-) demonstrate a new electronic perturbation on tetrahedral Co(ii) complexes. Using absorption spectroscopy and magnetometry, the consequences of the MIC's strong σ-donating/minimal π-accepting nature are analyzed and shown to be further tunable by the nature of the coordinated halide.

View Article and Find Full Text PDF

As the ability to generate magnetic anisotropy in molecular materials continues to hit new milestones, concerted effort has shifted towards understanding, and potentially controlling, the mechanisms of magnetic relaxation across a large time and temperature space. Slow magnetic relaxation in molecules is highly temperature-, field-, and environment-dependent with the relevant timescale easily traversing ten orders of magnitude for current single-molecule magnets (SMM). The prospect of synthetic control over the nature of (and transition probabilities between) magnetic states make unraveling the underlying mechanisms an important yet daunting challenge.

View Article and Find Full Text PDF

Contrast-enhanced ultrasound (CEUS) offers the exciting prospect of retaining the ease of ultrasound imaging while enhancing imaging clarity, diagnostic specificity, and theranostic capability. To advance the capabilities of CEUS, the synthesis and understanding of new ultrasound contrast agents (UCAs) is a necessity. Many UCAs are nano- or micro-scale materials composed of a perfluorocarbon (PFC) and stabilizer that synergistically induce an ultrasound response that is both information-rich and easily differentiated from natural tissue.

View Article and Find Full Text PDF

Maintaining strong magnetic anisotropy in the presence of collective spin interactions has become a defining challenge in the advancement of single-molecule magnet (SMM) research. Herein we demonstrate effective decoupling of these often competing design goals in a series of new phosphino-supported SMMs containing the anisotropic [Er(COT)] (COT = cyclooctatetraene dianion) subunit. Across this series, a magnetic nuclearity increase from 1 to 2 and subsequent optimization of the relative local anisotropy axis orientation results in dramatic improvements to the long time scale behavior.

View Article and Find Full Text PDF

The phenomenon of granular magnetoresistance offers the promise of rapid functional materials discovery and high-sensitivity, low-cost sensing technology. Since its discovery over 25 years ago, a major challenge has been the preparation of solids composed of well-characterized, uniform, nanoscale magnetic domains. Rapid advances in colloidal nanochemistry now facilitate the study of more complex and finely controlled materials, enabling the rigorous exploration of the fundamental nature and maximal capabilities of this intriguing class of spintronic materials.

View Article and Find Full Text PDF

A versatile platform for the development of new ultrasound contrast agents is demonstrated through a one-pot synthesis and fluorination of submicron polydopamine (PDA-F) nanoparticles. The fluorophilicity of these particles allows loading with perfluoropentane (PFP) droplets that display strong and persistent ultrasound contrast in aqueous suspension and ex vivo tissue samples. Contrast under continuous imaging by color Doppler persists for 1 h in 135 nm PDA-F samples, even at maximum clinical imaging power (MI = 1.

View Article and Find Full Text PDF

This study reports the preparation of a series of gadolinium-polydopamine nanoparticles (GdPD-NPs) with tunable metal loadings. GdPD-NPs are analyzed by nuclear magnetic relaxation dispersion and with a 7-tesla (T) magnetic resonance imaging (MRI) scanner. A relaxivity of 75 and 10.

View Article and Find Full Text PDF

Three MOF-74-type Co(II) frameworks with one-dimensional hexagonal channels have been prepared. Co(II) spins in a chain are ferromagnetically coupled through carboxylate and phenoxide bridges. Interchain antiferromagnetic couplings via aromatic ring pathways operate over a Co-Co length shorter than ∼10.

View Article and Find Full Text PDF

An all-solid-state quantum-dot-based photon-to-current conversion device is demonstrated that selectively detects the generation of hot electrons. Photoexcitation of Mn-doped CdS quantum dots embedded in the device is followed by efficient picosecond energy transfer to Mn with a long-lived (millisecond) excited-state lifetime. Electrons injected into the QDs under applied bias then capture this energy via Auger de-excitation, generating hot electrons that possess sufficient energy to escape over a ZnS blocking layer, thereby producing current.

View Article and Find Full Text PDF

We describe a synthetic method for increasing and controlling the iron loading of synthetic melanin nanoparticles and use the resulting materials to perform a systematic quantitative investigation on their structure-property relationship. A comprehensive analysis by magnetometry, electron paramagnetic resonance, and nuclear magnetic relaxation dispersion reveals the complexities of their magnetic behavior and how these intraparticle magnetic interactions manifest in useful material properties such as their performance as MRI contrast agents. This analysis allows predictions of the optimal iron loading through a quantitative modeling of antiferromagnetic coupling that arises from proximal iron ions.

View Article and Find Full Text PDF

A new hexagonal bipyramidal Ni8 cluster is reported and its magnetic behaviour is analyzed. The molecular structure consists of a hexagonal wheel capped by two additional apical Ni(2+) ions. This structure supports ferromagnetic superexchange interactions between adjacent Ni(2+) ions in the wheel and an antiferromagnetic superexchange interaction between the wheel and apical Ni(2+) ions.

View Article and Find Full Text PDF

Amphiphilic triblock copolymers containing Fe(III) -catecholate complexes formulated as spherical- or cylindrical-shaped micellar nanoparticles (SMN and CMN, respectively) are described as new T1-weighted agents with high relaxivity, low cytotoxicity, and long-term stability in biological fluids. Relaxivities of both SMN and CMN exceed those of established gadolinium chelates across a wide range of magnetic field strengths. Interestingly, shape-dependent behavior is observed in terms of the particles' interactions with HeLa cells, with CMN exhibiting enhanced uptake and contrast via magnetic resonance imaging (MRI) compared with SMN.

View Article and Find Full Text PDF

Colloidal diluted magnetic semiconductor (DMS) nanocrystals are model systems for studying spin effects in semiconductor nanostructures with relevance to future spin-based information processing technologies. The introduction of excess delocalized charge carriers into such nanocrystals turns on strong dopant-carrier magnetic exchange interactions, with important consequences for the physical properties of these materials. Here, we use pulsed electron paramagnetic resonance (pEPR) spectroscopy to probe the effects of excess conduction band electrons on the spin dynamics of colloidal Mn(2+)-doped ZnO nanocrystals.

View Article and Find Full Text PDF

We report a systematic investigation of the size dependence of negative trion (T(-)) Auger recombination rates in free-standing colloidal CdSe nanocrystals. Colloidal n-type CdSe nanocrystals of various radii have been prepared photochemically, and their trion decay dynamics have been measured using time-resolved photoluminescence spectroscopy. Trion Auger time constants spanning 3 orders of magnitude are observed, ranging from 57 ps (radius R = 1.

View Article and Find Full Text PDF

A method for electronic doping of colloidal CdSe nanocrystals (NCs) is reported. Anaerobic photoexcitation of CdSe NCs in the presence of a borohydride hole quencher, Li[Et3BH], yields colloidal n-type CdSe NCs possessing extra conduction-band electrons compensated by cations deposited by the hydride hole quencher. The photodoped NCs possess excellent optical quality and display the key spectroscopic signatures associated with NC n-doping, including a bleach at the absorption edge, appearance of a new IR absorption band, and Auger quenching of the excitonic photoluminescence.

View Article and Find Full Text PDF

Photodoped colloidal ZnO nanocrystals are model systems for understanding the generation and physical or chemical properties of excess delocalized charge carriers in semiconductor nanocrystals. Typically, ZnO photodoping is achieved photochemically using ethanol (EtOH) as a sacrificial reductant. Curiously, different studies have reported over an order of magnitude spread in the maximum number of conduction-band electrons that can be accumulated by photochemical oxidation of EtOH.

View Article and Find Full Text PDF

Chemical reductants of sub-conduction-band potentials are demonstrated to induce large photoluminescence enhancement in colloidal ZnSe-based nanocrystals. The photoluminescence quantum yield of colloidal Mn(2+)-doped ZnSe nanocrystals has been improved from 14% to 80% simply by addition of an outer-sphere reductant. Up to 48-fold redox brightening is observed for nanocrystals with lower starting quantum yields.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: