Publications by authors named "Jeffrey D Randall"

Interleukin-6 (IL-6) has been linked to several life-threatening disease processes. Developing a point-of-care testing platform for the immediate and accurate detection of IL-6 concentrations could present a valuable tool for improving clinical management in patients with IL-6-mediated diseases. Drawing on an available biobank of samples from 35 patients hospitalized with COVID-19, a novel quantum-magnetic sensing platform is used to determine plasma IL-6 concentrations.

View Article and Find Full Text PDF

The ability to detect single protein molecules in blood could accelerate the discovery and use of more sensitive diagnostic biomarkers. To detect low-abundance proteins in blood, we captured them on microscopic beads decorated with specific antibodies and then labeled the immunocomplexes (one or zero labeled target protein molecules per bead) with an enzymatic reporter capable of generating a fluorescent product. After isolating the beads in 50-fl reaction chambers designed to hold only a single bead, we used fluorescence imaging to detect single protein molecules.

View Article and Find Full Text PDF

We describe the cloning, sequencing and structure of the human fast skeletal troponin T (TNNT3) gene located on chromosome 11p15.5. The single-copy gene encodes 19 exons and 18 introns.

View Article and Find Full Text PDF

Single molecule detection of target molecules specifically bound by paired fluorescently labeled probes has shown great potential for sensitive quantitation of biomolecules. To date, no reports have rigorously evaluated the analytical capabilities of a single molecule detection platform employing this dual-probe approach or the performance of its data analysis methodology. In this paper, we describe a rapid, automated, and sensitive multicolor single molecule detection apparatus and a novel extension of coincident event counting based on detection of fluorescent probes.

View Article and Find Full Text PDF

Background: Mammalian tissues contain a presumed endogenous Na+, K(+)-ATPase inhibitor that binds reversibly to the Na+ pump with high affinity and specificity. The inhibitor has been linked to the pathogenesis of experimental volume-expanded and human essential hypertension. This compound has been isolated from mammalian hypothalamus and appears to be an isomer of the plant-derived cardiac glycoside ouabain, if not ouabain itself.

View Article and Find Full Text PDF

In mammalian fast skeletal muscle, constitutive and alternative splicing from a single troponin T (TnT) gene produce multiple developmentally regulated and tissue specific TnT isoforms. Two exons, alpha (exon 16) and beta (exon 17), located near the 3' end of the gene and coding for two different 14 amino acid residue peptides are spliced in a mutually exclusive manner giving rise to the adult TnTalpha and the fetal TnTbeta isoforms. In addition, an acidic peptide coded by a fetal (f) exon located between exons 8 and 9 near the 5' end of the gene, is specifically present in TnTbeta and absent in the adult isoforms.

View Article and Find Full Text PDF

Osp94 (osmotic stress protein of 94 kDa) is known to be up-regulated by hypertonic and heat-shock stresses in mouse renal inner medullary collecting duct (mIMCD3) cells. To investigate the molecular mechanism of transcriptional regulation of the Osp94 gene under these stresses, we cloned and characterized the 5'-flanking region of the gene. Sequence analysis of the proximal 4 kb 5'-flanking region revealed a TATA-less G/C-rich promoter region containing a cluster of Sp1 sites.

View Article and Find Full Text PDF

We screened for drugs that specifically interact with the 5'-untranslated region of the mRNA encoding the Alzheimer's amyloid precursor protein (APP). Our goal was to use newly discovered APP 5' UTR directed compounds to limit amyloid-beta (Abeta)-peptide output in cell culture systems. The APP 5' UTR folds into a stable RNA secondary structure (Gibbs free energy: DeltaG = -54.

View Article and Find Full Text PDF

We performed a screen for drugs that specifically interact with the 5' untranslated region of the mRNA coding for the Alzheimer's Amyloid Precursor Protein (APP). Using a transfection based assay, in which APP 5'UTR sequences drive the translation of a downstream luciferase reporter gene, we have been screening for new therapeutic compounds that already have FDA approval and are pharmacologically and clinically well-characterized. Several classes of FDA-pre-approved drugs (16 hits) reduced APP 5'UTR-directed luciferase expression (> 95% inhibition of translation).

View Article and Find Full Text PDF

Iron-responsive elements (IREs) are the RNA stem loops that control cellular iron homeostasis by regulating ferritin translation and transferrin receptor mRNA stability. We mapped a novel iron-responsive element (IRE-Type II) within the 5'-untranslated region (5'-UTR) of the Alzheimer's amyloid precursor protein (APP) transcript (+51 to +94 from the 5'-cap site). The APP mRNA IRE is located immediately upstream of an interleukin-1 responsive acute box domain (+101 to +146).

View Article and Find Full Text PDF

DNA microarrays, or gene chips, allow surveys of gene expression, (i.e., mRNA expression) in a highly parallel and comprehensive manner.

View Article and Find Full Text PDF