Publications by authors named "Jeffrey D Karron"

Premise: Cross-fertilization in most flowering plants is facilitated by mobile animals that transport pollen while foraging for floral rewards. The contributions of different visitors can vary widely, depending on the amount of pollen transferred during a single visit and on the frequency and timing of the visits of each pollinator taxon.

Methods: We used three approaches to measure the pollination value of bees that visit Mimulus ringens: pollinator interviews, field population observations, and caging studies.

View Article and Find Full Text PDF

Premise: The timing and pattern of a plant's flowering can have important consequences for reproductive success. Variation in flowering phenology may influence the number of prospective mates, the risk of mating with lower quality individuals, and the likelihood of self-pollination. Here we use a common garden experiment to explore within- and among-population variation in phenology.

View Article and Find Full Text PDF

Floral sexual polymorphisms have evolved repeatedly in angiosperms and are thought to reduce self-pollination and increase pollen export. Using a powerful pollen-labeling technique, quantum dots, a new study shows that pollen placement on pollinator bodies plays a critical role in disassortative pollination.

View Article and Find Full Text PDF

Variation in selfing rates within and among populations of hermaphroditic flowering plants can strongly influence the evolution of reproductive strategies and the genetic structure of populations. This intraspecific variation in mating patterns may reflect both genetic and ecological factors, but the relative importance of these factors remains poorly understood. Here, we explore how selfing in 13 natural populations of the perennial wildflower Mimulus ringens is influenced by (a) pollinator visitation, an ecological factor, and (b) floral display, a trait with a genetic component that also responds to environmental variation.

View Article and Find Full Text PDF

Researchers have long assumed that plant spatial location influences plant reproductive success and pollinator foraging behaviour. For example, many flowering plant populations have small, linear or irregular shapes that increase the proportion of plants on the edge, which may reduce mating opportunities through both male and female function. Additionally, plants that rely on pollinators may be particularly vulnerable to edge effects if those pollinators exhibit restricted foraging and pollen carryover is limited.

View Article and Find Full Text PDF

Background: Siring success plays a key role in plant evolution and reproductive ecology, and variation among individuals creates an opportunity for selection to act. Differences in male reproductive success can be caused by processes that occur during two stages, the pollination and post-pollination phases of reproduction. In the pollination phase, heritable variation in floral traits and floral display affect pollinator visitation patterns, which in turn affect variation among plants in the amount of pollen exported and deposited on recipient stigmas.

View Article and Find Full Text PDF

Premise: Genetically diverse sibships are thought to increase parental fitness through a reduction in the intensity of sib competition, and through increased opportunities for seedling establishment in spatially or temporally heterogeneous environments. Nearly all research on mate diversity in flowering plants has focused on the number of fathers siring seeds within a fruit or on a maternal plant. Yet as hermaphrodites, plants can also accrue mate diversity by siring offspring on several pollen recipients in a population.

View Article and Find Full Text PDF

Background: The male fitness pathway, from pollen production to ovule fertilization, is thought to strongly influence reproductive trait evolution in animal-pollinated plants. This pathway is characterized by multiple avenues of pollen loss which may lead to reductions in male fitness. However, empirical data on the mechanistic processes leading to pollen loss during transport are limited, and we therefore lack a comprehensive understanding of how male fitness is influenced by each step in the pollination process.

View Article and Find Full Text PDF

Pollinator abundance is declining worldwide and may lower the quantity and quality of pollination services to flowering plant populations. Loss of an important pollinator is often assumed to reduce the amount of pollen received by stigmas of a focal species (pollination success), yet this assumption has rarely been tested experimentally. The magnitude of the effect, if any, may depend on the relative efficiency of the remaining pollinators, and on whether the loss of one pollinator leads to changes in visitation patterns by other pollinators.

View Article and Find Full Text PDF

Pollinator behaviour has profound effects on plant mating. Pollinators are predicted to minimise energetic costs during foraging bouts by moving between nearby flowers. However, a review of plant mating system studies reveals a mismatch between behavioural predictions and pollen-mediated gene dispersal in bird-pollinated plants.

View Article and Find Full Text PDF

Premise Of The Study: Selfing rates vary widely within and among populations of self-compatible flowering plants. This variation is often attributed to differences in the amount and timing of self and outcross pollen deposition on stigmas, as well as to the influence of postpollination mechanisms that control fertilization success. This study explores the relative importance of pollination and postpollination processes in determining selfing rates in monkeyflower, Mimulus ringens.

View Article and Find Full Text PDF

In many flowering plants individual fruits contain a mixture of half- and full- siblings, reflecting pollination by several fathers. To better understand the mechanisms generating multiple paternity within fruits we present a theoretical framework linking pollen carryover with patterns of pollinator movement. This 'sire profile' model predicts that species with more extensive pollen carryover will have a greater number of mates.

View Article and Find Full Text PDF

Premise Of The Study: Microsatellite markers were isolated and characterized in Mimulus ringens (Phrymaceae), a herbaceous wetland perennial, to facilitate studies of mating patterns and population genetic structure. •

Methods And Results: A total of 42 polymorphic loci were identified from a sample of 24 individuals from a single population in Ohio, USA. The number of alleles per locus ranged from two to nine, and median observed heterozygosity was 0.

View Article and Find Full Text PDF

Background: The remarkable diversity of mating patterns and sexual systems in flowering plants has fascinated evolutionary biologists for more than a century. Enduring questions about this topic include why sexual polymorphisms have evolved independently in over 100 plant families, and why proportions of self- and cross-fertilization often vary dramatically within and among populations. Important new insights concerning the evolutionary dynamics of plant mating systems have built upon a strong foundation of theoretical models and innovative field and laboratory experiments.

View Article and Find Full Text PDF

Background And Aims: The number of flowers blooming simultaneously on a plant may have profound consequences for reproductive success. Large floral displays often attract more pollinator visits, increasing outcross pollen receipt. However, pollinators frequently probe more flowers in sequence on large displays, potentially increasing self-pollination and reducing pollen export per flower.

View Article and Find Full Text PDF

When exotic plant species share pollinators with native species, competition for pollination may lower the reproductive success of natives by reducing the frequency and/or quality of visits they receive. Exotic species often become numerically dominant in plant communities, and the relative abundance of these potential competitors for pollination may be an important determinant of their effects on the pollination and reproductive success of co-occurring native species. Our study experimentally tests whether the presence and abundance of an invasive exotic, Lythrum salicaria L.

View Article and Find Full Text PDF

Background: Some of the most exciting advances in pollination biology have resulted from interdisciplinary research combining ecological and evolutionary perspectives. For example, these two approaches have been essential for understanding the functional ecology of floral traits, the dynamics of pollen transport, competition for pollinator services, and patterns of specialization and generalization in plant-pollinator interactions. However, as research in these and other areas has progressed, many pollination biologists have become more specialized in their research interests, focusing their attention on either evolutionary or ecological questions.

View Article and Find Full Text PDF

Movement of pollinators between coflowering plant species may influence conspecific pollen deposition and seed set. Interspecific pollinator movements between native and showy invasive plants may be particularly detrimental to the pollination and reproductive success of native species. We explored the effects of invasive Lythrum salicaria on the reproductive success of Mimulus ringens, a wetland plant native to eastern North America.

View Article and Find Full Text PDF

Background: Co-flowering plant species frequently share pollinators. Pollinator sharing is often detrimental to one or more of these species, leading to competition for pollination. Perhaps because it offers an intriguing juxtaposition of ecological opposites - mutualism and competition - within one relatively tractable system, competition for pollination has captured the interest of ecologists for over a century.

View Article and Find Full Text PDF

Background And Aims: Adjacent flowers on Mimulus ringens floral displays often vary markedly in selfing rate. We hypothesized that this fine-scale variation in mating system reflects the tendency of bumble-bee pollinators to probe several flowers consecutively on multiflower displays. When a pollinator approaches a display, the first flower probed is likely to receive substantial outcross pollen.

View Article and Find Full Text PDF

The timing and effectiveness of pollinator visitation to flowers is an important factor influencing mating patterns and reproductive success. Multiple pollinator probes to a flower may increase both the quantity and genetic diversity of progeny, especially if single probes deposit insufficient pollen for maximal seed set or if the interval between probes is brief. When pollen carryover is limited, sequential pollen loads may also differ markedly in sire representation.

View Article and Find Full Text PDF

Multiply sired fruits provide unambiguous evidence that pollen from two or more donors was deposited on a stigma and successfully fertilized ovules. Such multiple paternity within fruits can have important consequences for both parental and offspring fitness, but little is known about the frequency of multiple paternity or the mechanisms causing it. In this study we quantify the extent of multiple paternity in replicate experimental arrays of Mimulus ringens (square-stem monkeyflower) and use observations of pollinator behavior to infer mechanisms generating multiply sired fruits.

View Article and Find Full Text PDF

In natural populations, wild radish plants typically mate with 6-8 pollen donors, and seeds of individual fruits are usually sired by 1-4 fathers. Since radish fruits are indehiscent and gravity-dispersed, progeny are most likely to compete with a mixture of full and half siblings. The fitness consequences of single and multiple paternity were investigated in a greenhouse experiment.

View Article and Find Full Text PDF