Pneumonias caused by influenza A virus (IAV) co- and secondary bacterial infections are characterized by their severity and high mortality rate. Previously, we have shown that bacterial pore-forming toxin (PFT)-mediated necroptosis is a key driver of acute lung injury during bacterial pneumonia. Here, we evaluate the impact of IAV on PFT-induced acute lung injury during co- and secondary Streptococcus pneumoniae (Spn) infection.
View Article and Find Full Text PDFThe influenza A (H1N1)pdm09 outbreak in 2009 exemplified the problems accompanying the emergence of novel influenza A virus (IAV) strains and their unanticipated virulence in populations with no pre-existing immunity. Neuraminidase inhibitors (NAIs) are currently the drugs of choice for intervention against IAV outbreaks, but there are concerns that NAI-resistant viruses can transmit to high-risk populations. These issues highlight the need for new approaches that address the annual influenza burden.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
December 2019
Obesity is a risk factor for asthma, especially nonatopic asthma, and attenuates the efficacy of standard asthma therapeutics. Obesity also augments pulmonary responses to ozone, a nonatopic asthma trigger. The purpose of this study was to determine whether obesity-related alterations in gut microbiota contribute to these augmented responses to ozone.
View Article and Find Full Text PDFSevere influenza (IAV) infection can develop into bronchopneumonia and edema, leading to acquired respiratory distress syndrome (ARDS) and pathophysiology. Underlying causes for pulmonary edema and aberrant fluid regulation largely remain unknown, particularly regarding the role of viral-mediated mechanisms. Herein, we show that distinct IAV strains reduced the functions of the epithelial sodium channel (ENaC) and the cystic fibrosis transmembrane regulator (CFTR) in murine respiratory and alveolar epithelia in vivo, as assessed by measurements of nasal potential differences and single-cell electrophysiology.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
September 2018
Previous reports demonstrate that the microbiome impacts allergic airway responses, including airway hyperresponsiveness, a characteristic feature of asthma. Here we examined the role of the microbiome in pulmonary responses to a nonallergic asthma trigger, ozone. We depleted the microbiota of conventional mice with either a single antibiotic (ampicillin, metronidazole, neomycin, or vancomycin) or a cocktail of all four antibiotics given via the drinking water.
View Article and Find Full Text PDFOzone and obesity both increase IL-17A in the lungs. In mice, obesity augments the airway hyperresponsiveness and neutrophil recruitment induced by acute ozone exposure. Therefore, we examined the role of IL-17A in obesity-related increases in the response to ozone observed in obese mice.
View Article and Find Full Text PDFExposure to subacute ozone (O3) causes pulmonary neutrophil recruitment. In mice, this recruitment requires IL-17A. Ozone also causes expression of IL-23 and IL-1, which can induce IL-17A.
View Article and Find Full Text PDFOzone is an air pollutant that causes pulmonary symptoms. In mice, ozone exposure causes pulmonary injury and increases bronchoalveolar lavage macrophages and neutrophils. We have shown that IL-17A is important in the recruitment of neutrophils after subacute ozone exposure (0.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
December 2012
Pulmonary dendritic cells (DCs) are among the first responders to inhaled environmental stimuli such as ozone (O(3)), which has been shown to activate these cells. O(3) reacts with epithelial lining fluid (ELF) components in an anatomically site-specific manner dictated by O(3) concentration, airway flow patterns, and ELF substrate concentration. Accordingly, the anatomical distribution of ELF reaction products and airway injury are hypothesized to produce selective DC maturation differentially within the airways.
View Article and Find Full Text PDFTransforming growth factor beta (TGF-beta) stimulates reactive oxygen species (ROS) production in various cell types, which mediates many of the effects of TGF-beta. The molecular mechanisms whereby TGF-beta increases ROS production and ROS modulate the signaling processes of TGF-beta, however, remain poorly defined. In this study, we show that TGF-beta1 stimulates NADPH oxidase 4 (Nox4) expression and ROS generation in the nucleus of murine embryo fibroblasts (NIH3T3 cells).
View Article and Find Full Text PDF