Publications by authors named "Jeffrey Currier"

Elimination of latent HIV-1 is a major goal of AIDS research but the host factors determining the size of these reservoirs are poorly understood. Here, we investigated whether differences in host gene expression modulate the size of the HIV-1 reservoir during suppressive ART. Peripheral blood mononuclear cells (PBMC) from fourteen individuals initiating ART during acute infection who demonstrated effective viral suppression but varying magnitude of total HIV-1 DNA were characterized by single-cell RNA sequencing (scRNA-seq).

View Article and Find Full Text PDF

Dengue virus (DENV) is the causative agent of dengue, a mosquito-borne disease that represents a significant and growing public health burden around the world. A unique pathophysiological feature of dengue is immune-mediated enhancement, wherein preexisting immunity elicited by a primary infection can enhance the severity of a subsequent infection by a heterologous DENV serotype. A leading mechanistic explanation for this phenomenon is antibody dependent enhancement (ADE), where sub-neutralizing concentrations of DENV-specific IgG antibodies facilitate entry of DENV into FcγR expressing cells such as monocytes, macrophages, and dendritic cells.

View Article and Find Full Text PDF

As robust cellular responses are important for protection against dengue, this phase 2 study evaluated the kinetics and phenotype of T cell responses induced by TAK-003, a live-attenuated tetravalent dengue vaccine, in 4-16-year-old living in dengue-endemic countries (NCT02948829). Two hundred participants received TAK-003 on Days 1 and 90. Interferon-gamma (IFN-γ) enzyme-linked immunospot assay [ELISPOT] and intracellular cytokine staining were used to analyze T cell response and functionality, using peptide pools representing non-structural (NS) proteins NS3 and NS5 matching DENV-1, -2, -3, and -4 and DENV-2 NS1.

View Article and Find Full Text PDF

Background: Dengue human infection models (DHIMs) are important tools to down-select dengue vaccine candidates and establish tetravalent efficacy before advanced clinical field trials. We aimed to provide data for the safety and immunogenicity of DHIM and evaluate dengue vaccine efficacy.

Methods: We performed an open-label, phase 1 trial at the University of Maryland (Baltimore, MD, USA).

View Article and Find Full Text PDF
Article Synopsis
  • - The study evaluated the safety and immune response of a low-dose DENV-3 challenge model in nine healthy individuals, following subcutaneous inoculation with an attenuated dengue virus strain.
  • - All participants developed detectable viral RNA within a week, with symptoms like fever, rash, and laboratory abnormalities indicating mild-to-moderate dengue.
  • - Immunological responses, including seroconversion and memory T cell activation, were evident within 14 days, and the severity of clinical symptoms correlated with the peak viral load in each participant.
View Article and Find Full Text PDF

Background: Dengue virus (DENV) nonstructural protein 1 (NS1) has multiple functions within infected cells, on the cell surface, and in secreted form, and is highly immunogenic. Immunity from previous DENV infections is known to exert both positive and negative effects on subsequent DENV infections, but the contribution of NS1-specific antibodies to these effects is incompletely understood.

Methods: We investigated the functions of NS1-specific antibodies and their significance in DENV infection.

View Article and Find Full Text PDF
Article Synopsis
  • The emergence of SARS-CoV-2 variants with reduced vaccine effectiveness shows the need for new vaccine designs that provide wider protection.
  • This study evaluates the antibody response from a novel vaccine, the Spike Ferritin Nanoparticle (SpFN), in non-human primates, particularly focusing on the antibodies that target different regions of the virus's Spike protein.
  • Six potent neutralizing antibodies were identified, demonstrating broad effectiveness against various sarbecovirus variants, including Delta and Omicron, with one antibody showing strong protection in murine studies.
View Article and Find Full Text PDF

Given the continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VoCs), immunotherapeutics that target conserved epitopes on the spike (S) glycoprotein have therapeutic advantages. Here, we report the crystal structure of the SARS-CoV-2 S receptor-binding domain (RBD) at 1.95 Å and describe flexibility and distinct conformations of the angiotensin-converting enzyme 2 (ACE2)-binding site.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how previous vaccinations with Japanese encephalitis virus (JEV) or yellow fever virus (YFV) influence antibody responses to a Zika virus (ZIKV) vaccine.
  • Researchers measured various antibody responses in 75 participants after ZIKV vaccination, finding that prior JEV or YFV vaccinations did not enhance ZIKV-specific antibody levels.
  • However, individuals who were previously vaccinated recognized a wider range of flavivirus antigens compared to those who were naïve, indicating the complexity of antibody responses across different flavivirus infections and vaccinations.
View Article and Find Full Text PDF

Background: COVID-19 vaccines have been critical for protection against severe disease following infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) but gaps remain in our understanding of the immune responses that contribute to controlling subclinical and mild infections.

Methods: Vaccinated, active-duty US military service members were enrolled in a non-interventional, minimal-risk, observational study starting in May, 2021. Clinical data, serum, and saliva samples were collected from study participants and were used to characterise the humoral immune responses to vaccination and to assess its impact on clinical and subclinical infections, as well as virologic outcomes of breakthrough infections (BTI) including viral load and infection duration.

View Article and Find Full Text PDF

Dengue virus (DENV) is endemic in >100 countries, infecting an estimated 400 million individuals every year. Infection with DENV raises an antibody response primarily targeting viral structural proteins. However, DENV encodes several immunogenic nonstructural (NS) proteins, one of which, NS1, is expressed on the membrane of DENV-infected cells.

View Article and Find Full Text PDF

This study demonstrates the impact of adjuvant on the development of T follicular helper (Tfh) and B cells, and their influence on antibody responses in mice vaccinated with SARS-CoV-2-spike-ferritin-nanoparticle (SpFN) adjuvanted with either Army Liposome Formulation containing QS-21 (SpFN + ALFQ) or Alhydrogel (SpFN + AH). SpFN + ALFQ increased the size and frequency of germinal center (GC) B cells in the vaccine-draining lymph nodes and increased the frequency of antigen-specific naive B cells. A single vaccination with SpFN + ALFQ resulted in a higher frequency of IL-21-producing-spike-specific Tfh and GC B cells in the draining lymph nodes and spleen, S-2P protein-specific IgM and IgG antibodies, and elicitation of robust cross-neutralizing antibodies against SARS-CoV-2 variants as early as day 7, which was enhanced by a second vaccination.

View Article and Find Full Text PDF

Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and waning immunity call for next-generation vaccine strategies. Here, we assessed the immunogenicity and protective efficacy of two SARS-CoV-2 vaccines targeting the WA1/2020 spike protein, Ad26.COV2.

View Article and Find Full Text PDF

The increasing global impact of dengue underscores the need for a dengue virus (DENV) vaccine. We assessed B-cell and T-cell responses following vaccination with four formulations of a tetravalent dengue purified inactivated vaccine (DPIV) in dengue-primed and dengue-naive adults from two studies (NCT01666652, NCT01702857). Frequencies of DPIV-induced memory B cells specific to each DENV serotype remained high up to 12 months post-vaccination, and were higher in the dengue-primed than dengue-naive adults.

View Article and Find Full Text PDF

Dengue virus (DENV) infection is the most prevalent arthropod-borne virus disease and is endemic in more than 100 countries. Several DENV proteins have been shown to target crucial human host proteins to evade innate immune responses and establish a productive infection. Here we report that the DENV NS3 protein targets RIPK1 (Receptor Interacting Protein Kinase I), a central mediator of inflammation and cell death, and decreases intracellular RIPK1 levels during DENV infection.

View Article and Find Full Text PDF
Article Synopsis
  • - Dengue virus (DENV) infections, prevalent in tropical areas, lead to significant health issues, with over 400 million infections annually and around 20,000 deaths, underscoring the need for better understanding of immune responses during infection.
  • - A study was conducted on individuals infected with the DENV-1 strain 45AZ5, revealing a strong immune response characterized by distinct antibodies (IgA, IgM, IgG) and specific delays in antibody production, providing insights into the timing and nature of the body's response.
  • - The research utilized RNA sequencing to identify key gene expression patterns that correlate with the onset of virus replication and adaptive immunity, highlighting important immunological features of primary DENV-1 infections that could
View Article and Find Full Text PDF

Prior immune responses to coronaviruses might affect human SARS-CoV-2 response. We screened 2,565 serum and plasma samples collected from 2013 through early 2020, before the COVID-19 pandemic began, from 2,250 persons in 4 countries in Africa (Kenya, Nigeria, Tanzania, and Uganda) and in Thailand, including persons living with HIV-1. We detected IgG responses to SARS-CoV-2 spike (S) subunit 2 protein in 1.

View Article and Find Full Text PDF

Vaccine-elicited SARS-CoV-2 antibody responses are an established correlate of protection against viral infection in humans and nonhuman primates. However, it is less clear that vaccine-induced immunity is able to limit infection-elicited inflammation in the lower respiratory tract. To assess this, we collected bronchoalveolar lavage fluid samples after SARS-CoV-2 strain USA-WA1/2020 challenge from rhesus macaques vaccinated with mRNA-1273 in a dose-reduction study.

View Article and Find Full Text PDF

The COVID-19 pandemic has had a staggering impact on social, economic, and public health systems worldwide. Vaccine development and mobilization against SARS-CoV-2 (the etiologic agent of COVID-19) has been rapid. However, novel strategies are still necessary to slow the pandemic, and this includes new approaches to vaccine development and/or delivery that will improve vaccination compliance and demonstrate efficacy against emerging variants.

View Article and Find Full Text PDF

The need for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) next-generation vaccines has been highlighted by the rise of variants of concern (VoCs) and the long-term threat of emerging coronaviruses. Here, we design and characterize four categories of engineered nanoparticle immunogens that recapitulate the structural and antigenic properties of the prefusion SARS-CoV-2 spike (S), S1, and receptor-binding domain (RBD). These immunogens induce robust S binding, ACE2 inhibition, and authentic and pseudovirus neutralizing antibodies against SARS-CoV-2.

View Article and Find Full Text PDF

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants stresses the continued need for next-generation vaccines that confer broad protection against coronavirus disease 2019 (COVID-19). We developed and evaluated an adjuvanted SARS-CoV-2 spike ferritin nanoparticle (SpFN) vaccine in nonhuman primates. High-dose (50 μg) SpFN vaccine, given twice 28 days apart, induced a Th1-biased CD4 T cell helper response and elicited neutralizing antibodies against SARS-CoV-2 wild-type and variants of concern, as well as against SARS-CoV-1.

View Article and Find Full Text PDF

The emergence of variants of concern, some with reduced susceptibility to COVID-19 vaccines underscores consideration for the understanding of vaccine design that optimizes induction of effective cellular and humoral immune responses. We assessed a SARS-CoV-2 spike-ferritin nanoparticle (SpFN) immunogen paired with two distinct adjuvants, Alhydrogel or Army Liposome Formulation containing QS-21 (ALFQ) for unique vaccine evoked immune signatures. Recruitment of highly activated multifaceted antigen-presenting cells to the lymph nodes of SpFN+ALFQ vaccinated mice was associated with an increased frequency of polyfunctional spike-specific memory CD4 T cells and K spike-(539-546)-specific long-lived memory CD8 T cells with effective cytolytic function and distribution to the lungs.

View Article and Find Full Text PDF

Dengue virus (DENV) is a prevalent human pathogen, infecting approximately 400 million individuals per year and causing symptomatic disease in approximately 100 million. A distinct feature of dengue is the increased risk for severe disease in some individuals with preexisting DENV-specific immunity. One proposed mechanism for this phenomenon is antibody-dependent enhancement (ADE), in which poorly-neutralizing IgG antibodies from a prior infection opsonize DENV to increase infection of F gamma receptor-bearing cells.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are investigating therapeutic monoclonal antibodies (mAbs) targeting different vulnerable sites on the SARS-CoV-2 spike protein to prevent the virus from escaping treatment and to enhance protection against variants.
  • They discovered several effective neutralizing antibodies that can be used in combination, showing strong protection in a mouse model of infection.
  • One specific RBD antibody, WRAIR-2125, was particularly effective against all major variants and, when used with other mAbs, helped prevent the virus from evading the immune response.
View Article and Find Full Text PDF

The emergence of SARS-CoV-2 variants of concern (VOC) requires adequate coverage of vaccine protection. We evaluated whether a SARS-CoV-2 spike ferritin nanoparticle vaccine (SpFN), adjuvanted with the Army Liposomal Formulation QS21 (ALFQ), conferred protection against the Alpha (B.1.

View Article and Find Full Text PDF