Semiconductor spin qubits combine excellent quantum performance with the prospect of manufacturing quantum devices using industry-standard metal-oxide-semiconductor (MOS) processes. This applies also to ion-implanted donor spins, which further afford exceptional coherence times and large Hilbert space dimension in their nuclear spin. Here multiple strategies are demonstrated and integrated to manufacture scale-up donor-based quantum computers.
View Article and Find Full Text PDFWhen strongly pumped at twice their resonant frequency, nonlinear resonators develop a high-amplitude intracavity field, a phenomenon known as parametric self-oscillations. The boundary over which this instability occurs can be extremely sharp and thereby presents an opportunity for realizing a detector. Here, we operate such a device based on a superconducting microwave resonator whose nonlinearity is engineered from kinetic inductance.
View Article and Find Full Text PDFEfficient detection of single optical centres in solids is essential for quantum information processing, sensing and single-photon generation applications. In this work, we use radio-frequency (RF) reflectometry to electrically detect the photoionisation induced by a single Er ion in Si. The high bandwidth and sensitivity of the RF reflectometry provide sub-100-ns time resolution for the photoionisation detection.
View Article and Find Full Text PDFEfficient scaling and flexible control are key aspects of useful quantum computing hardware. Spins in semiconductors combine quantum information processing with electrons, holes or nuclei, control with electric or magnetic fields, and scalable coupling via exchange or dipole interaction. However, accessing large Hilbert space dimensions has remained challenging, due to the short-distance nature of the interactions.
View Article and Find Full Text PDFThe use of superconducting microresonators together with quantum-limited Josephson parametric amplifiers has enhanced the sensitivity of pulsed electron spin resonance (ESR) measurements by more than four orders of magnitude. So far, the microwave resonators and amplifiers have been designed as separate components due to the incompatibility of Josephson junction-based devices with magnetic fields. This has produced complex spectrometers and raised technical barriers toward adoption of the technique.
View Article and Find Full Text PDFThe development of devices that exhibit both superconducting and semiconducting properties is an important endeavor for emerging quantum technologies. We investigate superconducting nanowires fabricated on a silicon-on-insulator (SOI) platform. Aluminum from deposited contact electrodes is found to interdiffuse with Si along the entire length of the nanowire, over micrometer length scales and at temperatures well below the Al-Si eutectic.
View Article and Find Full Text PDFCopper (Cu) is one of the most harmful contaminants in fresh-water systems. Fish larvae such as sacfry are particularly vulnerable to metals such as copper (Cu) due to a less-developed excretory organ system and permeable skin that can absorb metals directly from the water. However, the sublethal effects of metals on this life stage are not well understood.
View Article and Find Full Text PDFThe detection of charge trap ionization induced by resonant excitation enables spectroscopy on single Er ions in silicon nanotransistors. In this work, a time-resolved detection method is developed to investigate the resonant excitation and relaxation of a single Er ion in silicon. The time-resolved detection is based on a long-lived current signal with a tunable reset and allows the measurement under stronger and shorter resonant excitation in comparison to time-averaged detection.
View Article and Find Full Text PDFSilicon chips containing arrays of single dopant atoms can be the material of choice for classical and quantum devices that exploit single donor spins. For example, group-V donors implanted in isotopically purified Si crystals are attractive for large-scale quantum computers. Useful attributes include long nuclear and electron spin lifetimes of P, hyperfine clock transitions in Bi or electrically controllable Sb nuclear spins.
View Article and Find Full Text PDFThe quantum coherence and gate fidelity of electron spin qubits in semiconductors are often limited by nuclear spin fluctuations. Enrichment of spin-zero isotopes in silicon markedly improves the dephasing time [Formula: see text], which, unexpectedly, can extend two orders of magnitude beyond theoretical expectations. Using a single-atom P qubit in enriched Si, we show that the abnormally long [Formula: see text] is due to the freezing of the dynamics of the residual Si nuclei, caused by the electron-nuclear hyperfine interaction.
View Article and Find Full Text PDFSolid-state devices can be fabricated at the atomic scale, with applications ranging from classical logic to current standards and quantum technologies. Although it is very desirable to probe these devices and the quantum states they host at the atomic scale, typical methods rely on long-ranged capacitive interactions, making this difficult. Here, we probe a silicon electronic device at the atomic scale using a localized electronic quantum dot induced directly within the device at a desired location, using the biased tip of a low-temperature scanning tunneling microscope.
View Article and Find Full Text PDFNuclear spins are highly coherent quantum objects. In large ensembles, their control and detection via magnetic resonance is widely exploited, for example, in chemistry, medicine, materials science and mining. Nuclear spins also featured in early proposals for solid-state quantum computers and demonstrations of quantum search and factoring algorithms.
View Article and Find Full Text PDFContinued scaling of semiconductor devices has driven information technology into vastly diverse applications. The performance of ultrascaled transistors is strongly influenced by local electric field and strain. As the size of these devices approaches fundamental limits, it is imperative to develop characterization techniques with nanometer resolution and three-dimensional (3D) mapping capabilities for device optimization.
View Article and Find Full Text PDFCoherent dressing of a quantum two-level system provides access to a new quantum system with improved properties-a different and easily tunable level splitting, faster control and longer coherence times. In our work we investigate the properties of the dressed, donor-bound electron spin in silicon, and assess its potential as a quantum bit in scalable architectures. The two dressed spin-polariton levels constitute a quantum bit that can be coherently driven with an oscillating magnetic field, an oscillating electric field, frequency modulation of the driving field or a simple detuning pulse.
View Article and Find Full Text PDFHydrogen-terminated diamond possesses due to transfer doping a quasi-two-dimensional (2D) hole accumulation layer at the surface with a strong, Rashba-type spin-orbit coupling that arises from the highly asymmetric confinement potential. By modulating the hole concentration and thus the potential using an electrostatic gate with an ionic-liquid dielectric architecture the spin-orbit splitting can be tuned from 4.6-24.
View Article and Find Full Text PDFLarge-scale quantum computers must be built upon quantum bits that are both highly coherent and locally controllable. We demonstrate the quantum control of the electron and the nuclear spin of a single (31)P atom in silicon, using a continuous microwave magnetic field together with nanoscale electrostatic gates. The qubits are tuned into resonance with the microwave field by a local change in electric field, which induces a Stark shift of the qubit energies.
View Article and Find Full Text PDFBell's theorem proves the existence of entangled quantum states with no classical counterpart. An experimental violation of Bell's inequality demands simultaneously high fidelities in the preparation, manipulation and measurement of multipartite quantum entangled states, and provides a single-number benchmark for the performance of devices that use such states for quantum computing. We demonstrate a Bell/ Clauser-Horne-Shimony-Holt inequality violation with Bell signals up to 2.
View Article and Find Full Text PDFThe negatively charged nitrogen-vacancy colour center (NV(-) center) in nanodiamond is an excellent single photon source due to its stable photon generation in ambient conditions, optically addressable nuclear spin state, high quantum yield and its availability in nanometer sized crystals. In order to make practical devices using nanodiamond, highly efficient and directional emission of single photons in well-defined modes, either collimated into free space or waveguides are essential. This is a Herculean task as the photoluminescence of the NV centers is associated with two orthogonal dipoles arranged in a plane perpendicular to the NV defect symmetry axis.
View Article and Find Full Text PDFThe spin of an electron or a nucleus in a semiconductor naturally implements the unit of quantum information--the qubit. In addition, because semiconductors are currently used in the electronics industry, developing qubits in semiconductors would be a promising route to realize scalable quantum information devices. The solid-state environment, however, may provide deleterious interactions between the qubit and the nuclear spins of surrounding atoms, or charge and spin fluctuations arising from defects in oxides and interfaces.
View Article and Find Full Text PDFOptical antennas, subwavelength metallic structures resonating at visible frequencies, are a relatively new branch of antenna technology being applied in science, technology and medicine. Dynamically tuning the resonances of these antennas would increase their range of application and offer potential increases in plasmonic device efficiencies. Silver nanoantenna arrays were fabricated on a thin film of the phase change material vanadium dioxide (VO(2)) and the resonant wavelength of these arrays was modulated by increasing the temperature of the substrate above the critical temperature (approximately 68 °C).
View Article and Find Full Text PDFThe detection of electron spins associated with single defects in solids is a critical operation for a range of quantum information and measurement applications under development. So far, it has been accomplished for only two defect centres in crystalline solids: phosphorus dopants in silicon, for which electrical read-out based on a single-electron transistor is used, and nitrogen-vacancy centres in diamond, for which optical read-out is used. A spin read-out fidelity of about 90 per cent has been demonstrated with both electrical read-out and optical read-out; however, the thermal limitations of the former and the poor photon collection efficiency of the latter make it difficult to achieve the higher fidelities required for quantum information applications.
View Article and Find Full Text PDFThe formation of R8 germanium is reported. The β-Sn phase is first induced by the indentation of amorphous germanium (a-Ge) and the resultant phases on pressure release are characterized by Raman scattering. The expected Raman line frequencies for the various phases of Ge are determined from first-principles calculations using density functional perturbation theory of the zone-center phonons in the diamond, ST12, BC8, and R8 Ge phases.
View Article and Find Full Text PDF