This white paper examines the potential of pioneering technologies and artificial intelligence (AI)-driven solutions in advancing clinical trials involving radiotherapy. As the field of radiotherapy evolves, the integration of cutting-edge approaches such as radiopharmaceutical dosimetry, FLASH radiotherapy, image-guided radiation therapy (IGRT), and AI promises to improve treatment planning, patient care, and outcomes. Additionally, recent advancements in quantum science, linear energy transfer/relative biological effect (LET/RBE), and the combination of radiotherapy and immunotherapy create new avenues for innovation in clinical trials.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
January 2025
This position paper, led by the NRG Oncology Particle Therapy Work Group, focuses on the concept of relative biologic effect (RBE) in clinical proton therapy (PT), with the goal of providing recommendations for the next-generation clinical trials with PT on the best practice of investigating and using RBE, which could deviate from the current standard proton RBE value of 1.1 relative to photons. In part 1, current clinical utilization and practice are reviewed, giving the context and history of RBE.
View Article and Find Full Text PDFThe older American population is rapidly increasing, and millions of older adults will be cancer survivors with comorbidities. This population faces specific challenges regarding treatment and has unique clinical needs. Recognizing this need, the National Cancer Institute, in collaboration with the National Institute on Aging, hosted a webinar series, entitled Cancer, Aging, and Comorbidities.
View Article and Find Full Text PDFThe U.S. Government is committed to maintaining a robust research program that supports a portfolio of scientific experts who are investigating the biological effects of radiation exposure.
View Article and Find Full Text PDFDeep learning neural networks (DLNN) in Artificial intelligence (AI) have been extensively explored for automatic segmentation in radiotherapy (RT). In contrast to traditional model-based methods, data-driven AI-based models for auto-segmentation have shown high accuracy in early studies in research settings and controlled environment (single institution). Vendor-provided commercial AI models are made available as part of the integrated treatment planning system (TPS) or as a stand-alone tool that provides streamlined workflow interacting with the main TPS.
View Article and Find Full Text PDFPurpose: Few reports describe the risks of late ocular toxicities after radiation therapy (RT) for childhood cancers despite their effect on quality of life. The Pediatric Normal Tissue Effects in the Clinic (PENTEC) ocular task force aims to quantify the radiation dose dependence of select late ocular adverse effects. Here, we report results concerning retinopathy, optic neuropathy, and cataract in childhood cancer survivors who received cranial RT.
View Article and Find Full Text PDFPurpose: The ongoing lack of data standardization severely undermines the potential for automated learning from the vast amount of information routinely archived in electronic health records (EHRs), radiation oncology information systems, treatment planning systems, and other cancer care and outcomes databases. We sought to create a standardized ontology for clinical data, social determinants of health, and other radiation oncology concepts and interrelationships.
Methods And Materials: The American Association of Physicists in Medicine's Big Data Science Committee was initiated in July 2019 to explore common ground from the stakeholders' collective experience of issues that typically compromise the formation of large inter- and intra-institutional databases from EHRs.
FLASH radiation therapy (FLASH-RT), delivered with ultrahigh dose rate (UHDR), may allow patients to be treated with less normal tissue toxicity for a given tumor dose compared with currently used conventional dose rate. Clinical trials are being carried out and are needed to test whether this improved therapeutic ratio can be achieved clinically. During the clinical trials, quality assurance and credentialing of equipment and participating sites, particularly pertaining to UHDR-specific aspects, will be crucial for the validity of the outcomes of such trials.
View Article and Find Full Text PDFPurpose: Metastatic retinoblastoma has a poor prognosis when treated with conventional chemotherapy and radiation therapy (RT). Intensified therapy may improve the outcome.
Methods: A prospective, international trial enrolled patients with extraocular retinoblastoma.
With a widely attended virtual kickoff event on January 29, 2021, the National Cancer Institute (NCI) and the Department of Energy (DOE) launched a series of 4 interactive, interdisciplinary workshops-and a final concluding "World Café" on March 29, 2021-focused on advancing computational approaches for predictive oncology in the clinical and research domains of radiation oncology. These events reflect 3,870 human hours of virtual engagement with representation from 8 DOE national laboratories and the Frederick National Laboratory for Cancer Research (FNL), 4 research institutes, 5 cancer centers, 17 medical schools and teaching hospitals, 5 companies, 5 federal agencies, 3 research centers, and 27 universities. Here we summarize the workshops by first describing the background for the workshops.
View Article and Find Full Text PDFIn a time of rapid advances in science and technology, the opportunities for radiation oncology are undergoing transformational change. The linkage between and understanding of the physical dose and induced biological perturbations are opening entirely new areas of application. The ability to define anatomic extent of disease and the elucidation of the biology of metastases has brought a key role for radiation oncology for treating metastatic disease.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
December 2021
Purpose: In the current molecular-targeted cancer treatment era, many new agents are being developed so that optimizing therapy with a combination of radiation and drugs is complex. The use of emerging laboratory technologies to further biological understanding of drug-radiation mechanisms of action will enhance the efficiency of the progression from preclinical studies to clinical trials. In 2017, the National Cancer Institute (NCI) solicited proposals through PAR 16-111 to conduct preclinical research combining targeted anticancer agents in the Cancer Therapy Evaluation Program's portfolio with chemoradiation.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
August 2021
Despite technological advances in radiation therapy (RT) and cancer treatment, patients still experience adverse effects. Proton therapy (PT) has emerged as a valuable RT modality that can improve treatment outcomes. Normal tissue injury is an important determinant of the outcome; therefore, for this review, we analyzed 2 databases: (1) clinical trials registered with ClinicalTrials.
View Article and Find Full Text PDFThe limited impact of treatments for COVID-19 has stimulated several phase 1 clinical trials of whole-lung low-dose radiation therapy (LDRT; 0.3-1.5 Gy) that are now progressing to phase 2 randomized trials worldwide.
View Article and Find Full Text PDF