Conventionally, the size, shape, and biomechanics of cartilages are determined by their voluminous extracellular matrix. By contrast, we found that multiple murine cartilages consist of lipid-filled cells called lipochondrocytes. Despite resembling adipocytes, lipochondrocytes were molecularly distinct and produced lipids exclusively through de novo lipogenesis.
View Article and Find Full Text PDFImportance: The impact of patient-specific, disease-related, and social factors on outcomes in limited-stage small cell lung cancer (LS-SCLC) is not well defined. A post hoc secondary analysis of such factors from the Cancer and Leukemia Group B (CALGB) 30610-Radiation Therapy Oncology Group (RTOG) 0538 trial may impact future trial design.
Objective: To assess the comprehensive demographic, disease-related, treatment-related, and social factors for potential associations with survival outcomes and understand whether specific subpopulations may benefit from radiotherapy (RT) dose escalation in LS-SCLC.
Purpose: NRG-RTOG0617 demonstrated a detrimental effect of uniform high-dose radiation in stage III non-small cell lung cancer. NRG-RTOG1106/ECOG-ACRIN6697 (ClinicalTrials.gov identifier: NCT01507428), a randomized phase II trial, studied whether midtreatment F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) can guide individualized/adaptive dose-intensified radiotherapy (RT) to improve and predict outcomes in patients with this disease.
View Article and Find Full Text PDFPurpose: To review our initial experience with proton-based SBRT to evaluate the planning outcomes and initial patient tolerance of treatment.
Patients And Methods: From Sep. 2019 to Dec.
Importance: The optimal radiotherapy technique for unresectable locally advanced non-small cell lung cancer (NSCLC) is controversial, so evaluating long-term prospective outcomes of intensity-modulated radiotherapy (IMRT) is important.
Objective: To compare long-term prospective outcomes of patients receiving IMRT and 3-dimensional conformal radiotherapy (3D-CRT) with concurrent carboplatin/paclitaxel for locally advanced NSCLC.
Design, Setting, And Participants: A secondary analysis of a prospective phase 3 randomized clinical trial NRG Oncology-RTOG 0617 assessed 483 patients receiving chemoradiotherapy (3D-CRT vs IMRT) for locally advanced NSCLC based on stratification.
Purpose: Emerging data have illuminated the impact of effective radiation dose to immune cells (EDIC) on outcomes in patients with locally advanced, unresectable non-small cell lung cancer (NSCLC) treated with intensity-modulated radiotherapy (IMRT). Hypothesizing that intensity-modulated proton therapy (IMPT) may reduce EDIC versus IMRT, we conducted a dosimetric analysis of patients treated at our institution.
Materials And Methods: Data were retrospectively collected for 12 patients with locally advanced, unresectable NSCLC diagnosed between 2019 and 2021 who had physician-approved IMRT and IMPT plans.
Purpose: To identify the characteristics, indications, and toxicities among patients receiving proton beam therapy (PBT) in the final year of life at an academic medical center.
Materials And Methods: A retrospective review of patients who received PBT within the final 12 months of life was performed. Electronic medical records were reviewed for patient and treatment details from 2010 to 2019.
Magnetic Resonance Imaging (MRI) is increasingly being used in treatment planning due to its superior soft tissue contrast, which is useful for tumor and soft tissue delineation compared to computed tomography (CT). However, MRI cannot directly provide mass density or relative stopping power (RSP) maps, which are required for calculating proton radiotherapy doses. Therefore, the integration of artificial intelligence (AI) into MRI-based treatment planning to estimate mass density and RSP directly from MRI has generated significant interest.
View Article and Find Full Text PDFStereotactic body radiation therapy (SBRT) and hypofractionation using pencil-beam scanning (PBS) proton therapy (PBSPT) is an attractive option for thoracic malignancies. Combining the advantages of target coverage conformity and critical organ sparing from both PBSPT and SBRT, this new delivery technique has great potential to improve the therapeutic ratio, particularly for tumors near critical organs. Safe and effective implementation of PBSPT SBRT/hypofractionation to treat thoracic malignancies is more challenging than the conventionally fractionated PBSPT because of concerns of amplified uncertainties at the larger dose per fraction.
View Article and Find Full Text PDFPurpose: Peer review in the form of chart rounds is a critical component of quality assurance and safety in radiation therapy treatments. Radiation therapy departments have undergone significant changes that impose challenges to meaningful review, including institutional growth and increasing use of virtual environment. We discuss the implementation of a novel chart rounds (NCR) format and application adapted to modern peer review needs at a single high-volume multisite National Cancer Institute designated cancer center.
View Article and Find Full Text PDFIntroduction: It was hypothesized that use of proton beam therapy (PBT) in patients with locally advanced non-small cell lung cancer treated with concurrent chemoradiation and consolidative immune checkpoint inhibition is associated with fewer unplanned hospitalizations compared with intensity-modulated radiotherapy (IMRT).
Methods: Patients with locally advanced non-small cell lung cancer treated between October 2017 and December 2021 with concurrent chemoradiation with either IMRT or PBT ± consolidative immune checkpoint inhibition were retrospectively identified. Logistic regression was used to assess the association of radiation therapy technique with 90-day hospitalization and grade 3 (G3+) lymphopenia.
Background: Immune checkpoint inhibitor (ICI) consolidation following concurrent chemoradiotherapy (CRT) substantially improved progression free survival (PFS) and overall survival (OS) in the PACIFIC trial becoming the standard of care in locally-advanced, unresectable NSCLC. KRAS mutation may influence response to ICI.
Methods: In this single-institution, retrospective analysis, we compared treatment outcomes for patients with unresectable KRAS mutated (KRAS-mt) and wild-type (KRAS-wt) NSCLC treated with CRT between October 2017 and December 2021.
Purpose: The recently proposed Integrated Physical Optimization Intensity Modulated Proton Therapy (IPO-IMPT) framework allows simultaneous optimization of dose, dose rate, and linear energy transfer (LET) for ultra-high dose rate (FLASH) treatment planning. Finding solutions to IPO-IMPT is difficult because of computational intensiveness. Nevertheless, an inverse solution that simultaneously specifies the geometry of a sparse filter and weights of a proton intensity map is desirable for both clinical and preclinical applications.
View Article and Find Full Text PDFBackground: The number of patients undergoing proton therapy has increased in recent years. Current treatment planning systems (TPS) calculate dose maps using three-dimensional (3D) maps of relative stopping power (RSP) and mass density. The patient-specific maps of RSP and mass density were obtained by translating the CT number (HU) acquired using single-energy computed tomography (SECT) with appropriate conversions and coefficients.
View Article and Find Full Text PDFPurpose: To explore the association of the effective dose to immune cells (EDIC) with disease control, lymphopenia, and toxicity in patients with non-small cell lung cancer (NSCLC) and identify methods to reduce EDIC.
Methods: We abstracted data from all patients with locally advanced NSCLC treated with chemoradiation with or without consolidative immunotherapy over a ten-year period. Associations between EDIC and progression-free survival (PFS) and overall survival (OS) were modeled with Cox proportional hazards and Kaplan-Meier method.
Purpose: We assessed the association of cardiac radiation dose with cardiac events and survival post-chemoradiation therapy (CRT) in patients with locally advanced non-small cell lung cancer (LA-NSCLC) after adoption of modern radiation therapy (RT) techniques, stricter cardiac dose constraints, and immune checkpoint inhibitor (ICI) consolidation.
Methods And Materials: This single-institution, multi-site retrospective study included 335 patients with LA-NSCLC treated with definitive, concurrent CRT between October 2017 and December 2021. All patients were evaluated for ICI consolidation.
Purpose: The objective of this study was to describe the patterns of failure, frequency of low-volume relapse (LVR), and candidacy for ablative therapy at time of disease progression (PD) after chemoradiation and consolidative immunotherapy (CRT + ICI) in patients with stage III non-small cell lung cancer.
Methods And Materials: We identified 229 consecutive patients with stage III non-small cell lung cancer treated with CRT + ICI between October 2017 and December 2021 at a single institution. PD was classified as isolated locoregional failure (LRF), isolated distant failure (DF), or synchronous LRF + DF.
Purpose: RTOG 0617 was a phase III randomized trial for patients with unresectable stage IIIA/IIIB non-small cell lung cancer comparing standard-dose (60 Gy) versus high-dose (74 Gy) radiotherapy and chemotherapy, plus or minus cetuximab. Although the study was negative, based on prior evidence that patients with the KRAS-variant, an inherited germline mutation, benefit from cetuximab, we evaluated KRAS-variant patients in RTOG 0617.
Experimental Design: From RTOG 0617, 328 of 496 (66%) of patients were included in this analysis.
Background: An automated, accurate, and efficient lung four-dimensional computed tomography (4DCT) image registration method is clinically important to quantify respiratory motion for optimal motion management.
Purpose: The purpose of this work is to develop a weakly supervised deep learning method for 4DCT lung deformable image registration (DIR).
Methods: The landmark-driven cycle network is proposed as a deep learning platform that performs DIR of individual phase datasets in a simulation 4DCT.
Objective: Mapping CT number to material property dominates the proton range uncertainty. This work aims to develop a physics-constrained deep learning-based multimodal imaging (PDMI) framework to integrate physics, deep learning, MRI, and advanced dual-energy CT (DECT) to derive accurate patient mass density maps.
Methods: Seven tissue substitute MRI phantoms were used for validation including adipose, brain, muscle, liver, skin, spongiosa, 45% hydroxyapatite (HA) bone.
Purpose: Reirradiation (reRT) with proton beam therapy (PBT) may offer a chance of cure while minimizing toxicity for patients with isolated intrathoracic recurrences of non-small cell lung cancer (NSCLC). However, distant failure remains common, necessitating strategies to integrate more effective systemic therapy.
Methods And Materials: This was a phase 2, single-arm trial (NCT03087760) of consolidation pembrolizumab after PBT reRT for locoregional recurrences of NSCLC.
Purpose: We hypothesized that after adoption of immune checkpoint inhibitor (ICI) consolidation for patients with locally advanced non-small cell lung cancer (LA-NSCLC) receiving concurrent chemoradiation therapy (cCRT), rates of symptomatic pneumonitis would increase, thereby supporting efforts to reduce lung radiation dose.
Methods And Materials: This single institution, multisite retrospective study included 783 patients with LA-NSCLC treated with definitive cCRT either before introduction of ICI consolidation (pre-ICI era cohort [January 2011-September 2017]; N = 448) or afterward (ICI era cohort [October 2017-December 2021]; N = 335). Primary endpoint was grade ≥2 pneumonitis (G2P) and secondary endpoint was grade ≥3 pneumonitis (G3P), per Common Terminology Criteria for Adverse Events v5.
Dual-energy computed tomography (DECT) is a promising technology that has shown a number of clinical advantages over conventional X-ray CT, such as improved material identification, artifact suppression, etc. For proton therapy treatment planning, besides material-selective images, maps of effective atomic number (Z) and relative electron density to that of water ($\rho_e$) can also be achieved and further employed to improve stopping power ratio accuracy and reduce range uncertainty. In this work, we propose a one-step iterative estimation method, which employs multi-domain gradient $L_0$-norm minimization, for Z and $\rho_e$ maps reconstruction.
View Article and Find Full Text PDF