Publications by authors named "Jeffrey Bokor"

The magnetoelectric behavior of epitaxial Fe-Ga microstructures on top of a (001)-oriented PMN-PT piezoelectric substrate is imaged with magnetic X-ray microscopy. Additionally, the micron-scale strain distribution in PMN-PT is characterized by X-ray microdiffraction and examined with respect to the results of the Fe-Ga magnetoelectric switching. The magnetic reorientation of Fe-Ga is found to be strongly correlated with size, shape, and crystallographic orientation of the microstructures.

View Article and Find Full Text PDF

Electrically controllable nonvolatile magnetic memories show great potential for the replacement of conventional semiconductor-based memory technologies. Here, we experimentally demonstrate ultrafast spin-orbit torque (SOT)-induced coherent magnetization switching dynamics in a ferromagnet. We use an ultrafast photoconducting switch and a coplanar strip line to generate and guide a ~9-picosecond electrical pulse into a heavy metal/ferromagnet multilayer to induce ultrafast SOT.

View Article and Find Full Text PDF

The electronic, optical, and magnetic properties of graphene nanoribbons (GNRs) can be engineered by controlling their edge structure and width with atomic precision through bottom-up fabrication based on molecular precursors. This approach offers a unique platform for all-carbon electronic devices but requires careful optimization of the growth conditions to match structural requirements for successful device integration, with GNR length being the most critical parameter. In this work, the growth, characterization, and device integration of 5-atom wide armchair GNRs (5-AGNRs) are studied, which are expected to have an optimal bandgap as active material in switching devices.

View Article and Find Full Text PDF

Atomically thin graphene layers can act as a spin-sink material when adjacent to a nanoscale magnetic surface. The enhancement in the extrinsic spin-orbit coupling (SOC) strength of graphene plays an important role in absorbing the spin angular momentum injected from the magnetic surface after perturbation with an external stimulus. As a result, the dynamics of the excited spin system is modified within the magnetic layer.

View Article and Find Full Text PDF

Advanced beyond-silicon electronic technology requires both channel materials and also ultralow-resistance contacts to be discovered. Atomically thin two-dimensional semiconductors have great potential for realizing high-performance electronic devices. However, owing to metal-induced gap states (MIGS), energy barriers at the metal-semiconductor interface-which fundamentally lead to high contact resistance and poor current-delivery capability-have constrained the improvement of two-dimensional semiconductor transistors so far.

View Article and Find Full Text PDF

Programming magnetic fields with microscale control can enable automation at the scale of single cells ≈10 µm. Most magnetic materials provide a consistent magnetic field over time but the direction or field strength at the microscale is not easily modulated. However, magnetostrictive materials, when coupled with ferroelectric material (i.

View Article and Find Full Text PDF

The scope of graphene nanoribbon (GNR) structures accessible through bottom-up approaches is defined by the intrinsic limitations of either all-on-surface or all-solution-based synthesis. Here, we report a hybrid bottom-up synthesis of GNRs based on a Matrix-Assisted Direct (MAD) transfer technique that successfully leverages technical advantages inherent to both solution-based and on-surface synthesis while sidestepping their drawbacks. Critical structural parameters tightly controlled in solution-based polymerization reactions can seamlessly be translated into the structure of the corresponding GNRs.

View Article and Find Full Text PDF

The rational bottom-up synthesis of graphene nanoribbons (GNRs) provides atomically precise control of widths and edges that give rise to a wide range of electronic properties promising for electronic devices such as field-effect transistors (FETs). Since the bottom-up synthesis commonly takes place on catalytic metallic surfaces, the integration of GNRs into such devices requires their transfer onto insulating substrates, which remains one of the bottlenecks in the development of GNR-based electronics. Herein, we report on a method for the transfer-free placement of GNRs on insulators.

View Article and Find Full Text PDF
Article Synopsis
  • - Using pulsed ferroelectric measurements, researchers studied the fast switching dynamics of multiferroic BiFeO_{3}, demonstrating that it can switch in low nanosecond times.
  • - The findings support a nucleation and growth model that explains the different timescales involved, including ferroelectric polarization switching and the movement of free charges in the circuit.
  • - The model aligns well with experimental data, helping to connect theoretical predictions with real-world observations and opening avenues for investigating ferroelectric switching at fundamental timescales.
View Article and Find Full Text PDF
Article Synopsis
  • Magnetoelectric coupling in multiferroic materials like BiFeO is crucial for developing low-power spintronics and memory technologies at room temperature.
  • Research on chemically modified BiFeO, especially with La substitutions, shows changes in the energy landscape and shifts in the polar and antiferromagnetic axes.
  • La-doped BiFeO films demonstrate a unique magnetoelectric coupling compared to undoped versions, which could enhance their applicability in technology.
View Article and Find Full Text PDF

FeRh is a unique alloy which shows temperature dependent phase transition magnetic properties. The lattice parameter () of this CsCl-type (B2) structure is 4.1712 Å.

View Article and Find Full Text PDF

Carbon nanotube field-effect transistors (CNFETs) promise to improve the energy efficiency, speed, and transistor density of very large scale integration circuits owing to the intrinsic thin channel body and excellent charge transport properties of carbon nanotubes. Low-temperature fabrication (e.g.

View Article and Find Full Text PDF

Strain-coupled multiferroic heterostructures provide a path to energy-efficient, voltage-controlled magnetic nanoscale devices, a region where current-based methods of magnetic control suffer from Ohmic dissipation. Growing interest in highly magnetoelastic materials, such as Terfenol-D, prompts a more accurate understanding of their magnetization behavior. To address this need, we simulate the strain-induced magnetization change with two modeling methods: the commonly used unidirectional model and the recently developed bidirectional model.

View Article and Find Full Text PDF

Composite multiferroic systems, consisting of a piezoelectric substrate coupled with a ferromagnetic thin film, are of great interest from a technological point of view because they offer a path toward the development of ultralow power magnetoelectric devices. The key aspect of those systems is the possibility to control magnetization via an electric field, relying on the magneto-elastic coupling at the interface between the piezoelectric and the ferromagnetic components. Accordingly, a direct measurement of both the electrically induced magnetic behavior and of the piezo-strain driving such behavior is crucial for better understanding and further developing these materials systems.

View Article and Find Full Text PDF

The field of spintronics involves the study of both spin and charge transport in solid-state devices. Ultrafast magnetism involves the use of femtosecond laser pulses to manipulate magnetic order on subpicosecond time scales. We unite these phenomena by using picosecond charge current pulses to rapidly excite conduction electrons in magnetic metals.

View Article and Find Full Text PDF

Bottom-up synthesized graphene nanoribbons and graphene nanoribbon heterostructures have promising electronic properties for high-performance field-effect transistors and ultra-low power devices such as tunneling field-effect transistors. However, the short length and wide band gap of these graphene nanoribbons have prevented the fabrication of devices with the desired performance and switching behavior. Here, by fabricating short channel (L  ~ 20 nm) devices with a thin, high-κ gate dielectric and a 9-atom wide (0.

View Article and Find Full Text PDF

A wealth of fascinating phenomena have been discovered at the BiFeO domain walls, examples such as domain wall conductivity, photovoltaic effects, and magnetoelectric coupling. Thus, the ability to precisely control the domain structures and accurately study their switching behaviors is critical to realize the next generation of novel devices based on domain wall functionalities. In this work, the introduction of a dielectric layer leads to the tunability of the depolarization field both in the multilayers and superlattices, which provides a novel approach to control the domain patterns of BiFeO films.

View Article and Find Full Text PDF

Scaling of silicon (Si) transistors is predicted to fail below 5-nanometer (nm) gate lengths because of severe short channel effects. As an alternative to Si, certain layered semiconductors are attractive for their atomically uniform thickness down to a monolayer, lower dielectric constants, larger band gaps, and heavier carrier effective mass. Here, we demonstrate molybdenum disulfide (MoS) transistors with a 1-nm physical gate length using a single-walled carbon nanotube as the gate electrode.

View Article and Find Full Text PDF

Minimizing energy dissipation has emerged as the key challenge in continuing to scale the performance of digital computers. The question of whether there exists a fundamental lower limit to the energy required for digital operations is therefore of great interest. A well-known theoretical result put forward by Landauer states that any irreversible single-bit operation on a physical memory element in contact with a heat bath at a temperature T requires at least k B T ln(2) of heat be dissipated from the memory into the environment, where k B is the Boltzmann constant.

View Article and Find Full Text PDF

Spin orbit torque (SOT) provides an efficient way to significantly reduce the current required for switching nanomagnets. However, SOT generated by an in-plane current cannot deterministically switch a perpendicularly polarized magnet due to symmetry reasons. On the other hand, perpendicularly polarized magnets are preferred over in-plane magnets for high-density data storage applications due to their significantly larger thermal stability in ultrascaled dimensions.

View Article and Find Full Text PDF

Spin-polarized electrons can move a ferromagnetic domain wall through the transfer of spin angular momentum when current flows in a magnetic nanowire. Such current induced control of a domain wall is of significant interest due to its potential application for low power ultra high-density data storage. In previous reports, it has been observed that the motion of the domain wall always happens parallel to the current flow - either in the same or opposite direction depending on the specific nature of the interaction.

View Article and Find Full Text PDF

In this work, we experimentally demonstrate deterministic electrically driven, strain-mediated domain wall (DW) rotation in ferromagnetic Ni rings fabricated on piezoelectric [Pb(Mg1/3Nb2/3)O3]0.66-[PbTiO3]0.34 (PMN-PT) substrates.

View Article and Find Full Text PDF

Energy efficient nanomagnetic logic (NML) computing architectures propagate binary information by relying on dipolar field coupling to reorient closely spaced nanoscale magnets. Signal propagation in nanomagnet chains has been previously characterized by static magnetic imaging experiments; however, the mechanisms that determine the final state and their reproducibility over millions of cycles in high-speed operation have yet to be experimentally investigated. Here we present a study of NML operation in a high-speed regime.

View Article and Find Full Text PDF

Efficient conversion of photonic to plasmonic energy is important for nano-optical applications, particularly imaging and spectroscopy. Recently a new generation of photonic/plasmonic transducers, the 'campanile' probes, has been developed that overcomes many shortcomings of previous near-field probes by efficiently merging broadband field enhancement with bidirectional coupling of far- to near-field electromagnetic modes. In this work we compare the properties of the campanile structure with those of current NSOM tips using finite element simulations.

View Article and Find Full Text PDF

We develop short-channel transistors using solution-processed single-walled carbon nanotubes (SWNTs) to evaluate the feasibility of those SWNTs for high-performance applications. Our results show that even though the intrinsic field-effect mobility is lower than the mobility of CVD nanotubes, the electrical contact between the nanotube and metal electrodes is not significantly affected. It is this contact resistance which often limits the performance of ultrascaled transistors.

View Article and Find Full Text PDF