Publications by authors named "Jeffrey Bode"

Article Synopsis
  • The study explores the chemistry of microbial communities in algal-bacterial mats from Lake Chilika, revealing significant findings about bacterial diversity and biosynthetic capabilities.
  • Researchers reconstructed over 1,300 environmental genomes and identified more than 2,200 biosynthetic gene clusters associated with potential bioactive compounds.
  • The work highlights new peptides with protease inhibitory and antiviral properties, emphasizing the potential of these natural products for future drug discovery efforts.
View Article and Find Full Text PDF

The development of an automated and reproducible process for copper-mediated click reactions of alkynes and azides into 1,4-disubstituted 1,2,3-triazole products is described. This method utilizes prepacked capsules that contain all necessary reagents and materials for the reaction and purification processes. The reaction and product isolation steps are fully automated with no further user involvement, resulting in the triazole products in high purity.

View Article and Find Full Text PDF

Purpose: The angiotensin converting enzyme 2 (ACE2) plays a regulatory role in the cardiovascular system and serves SARS-CoV-2 as an entry receptor. The aim of this study was to synthesize and evaluate radiofluorinated derivatives of the ACE2 inhibitor MLN-4760. [F]F-MLN-4760 and [F]F-Aza-MLN-4760 were demonstrated to be suitable for non-invasive imaging of ACE2, potentially enabling a better understanding of its expression dynamics.

View Article and Find Full Text PDF

Described herein is the development of an automated and reproducible process for the conversion of primary amines to organic azides utilizing prepacked capsules containing all the required reagents, including imidazole-1-sulfonyl azide tetrafluoroborate. Apart from manually loading the primary amine into the reaction vessel, the entire reaction and product isolation process can be achieved automatically, with no further user involvement, and delivers the desired organic azide in high purity. This practical and simple automated capsule-based method offers a convenient and safe way of generating organic azides without handling or exposure of potentially explosive reagents.

View Article and Find Full Text PDF

Secretoglobin (SCGB) 3A2 belongs to an intriguing family of small, secreted proteins present only in mammals. Although members of the SCGB protein family have distinct amino acid sequences, they share structural similarities. Of particularly interest is the not yet fully understood self-assembly ability of SCGBs, which arise from covalent disulfide dimerization and non-covalent oligomerization.

View Article and Find Full Text PDF

Inhibition of K-RAS effectors like B-RAF or MEK1/2 is accompanied by treatment resistance in cancer patients via re-activation of PI3K and Wnt signaling. We hypothesized that myotubularin-related-protein-7 (MTMR7), which inhibits PI3K and ERK1/2 signaling downstream of RAS, directly targets RAS and thereby prevents resistance. Using cell and structural biology combined with animal studies, we show that MTMR7 binds and inhibits RAS at cellular membranes.

View Article and Find Full Text PDF

The role of monoclonal antibodies as vehicles to deliver payloads has evolved as a powerful tool in cancer therapy in recent years. The clinical development of therapeutic antibody conjugates with precise payloads holds great promise for targeted therapeutic interventions. The use of affinity-peptide mediated functionalization of native off-the-shelf antibodies offers an effective approach to selectively modify IgG antibodies with a drug-antibody ratio (DAR) of 2.

View Article and Find Full Text PDF

The generation of attractive scaffolds for drug discovery efforts requires the expeditious synthesis of diverse analogues from readily available building blocks. This endeavor necessitates a trade-off between diversity and ease of access and is further complicated by uncertainty about the synthesizability and pharmacokinetic properties of the resulting compounds. Here, we document a platform that leverages photocatalytic N-heterocycle synthesis, high-throughput experimentation, automated purification, and physicochemical assays on 1152 discrete reactions.

View Article and Find Full Text PDF

The elucidation of emerging biological functions of heterotypic and branched ubiquitin (Ub) chains requires new strategies for their preparation with defined lengths and connectivity. While enzymatic assembly using expressed E1-activating and E2-conjugating enzymes can deliver homotypic chains, the synthesis of branched chains typically requires extensive mutations of lysines or other sequence modifications. The combination of K48- and K63-biased E2-conjugating enzymes and two new carbamate protecting groups-pyridoxal 5'-phosphate (PLP)-cleavable aminobutanamide carbamate (Abac group) and periodate-cleavable aminobutanol carbamate (Aboc group)-provides a strategy for the synthesis of heterotypic and branched Ub trimers, tetramers, and pentamers.

View Article and Find Full Text PDF

Macroautophagy is one of two major degradation systems in eukaryotic cells. Regulation and control of autophagy are often achieved through the presence of short peptide sequences called LC3 interacting regions (LIR) in autophagy-involved proteins. Using a combination of new protein-derived activity-based probes prepared from recombinant LC3 proteins, along with protein modeling and X-ray crystallography of the ATG3-LIR peptide complex, we identified a noncanonical LIR motif in the human E2 enzyme responsible for LC3 lipidation, ATG3.

View Article and Find Full Text PDF

The development of an automated process for Suzuki-Miyaura cross couplings is described, in which the complete reaction, workup, and product isolation are effected automatically with no user involvement, aside from loading of the starting materials and reaction capsule. This practical and simple method was successfully demonstrated to provide the desired biaryl products using a range of aryl bromides and boronic acids and is also effective for the late-stage functionalization of aryl halides in bioactive molecules.

View Article and Find Full Text PDF

Purpose: The angiotensin converting enzyme-2 (ACE2)-entry receptor of SARS-CoV-2-and its homologue, the angiotensin-converting enzyme (ACE), play a pivotal role in maintaining cardiovascular homeostasis. Potential changes in ACE2 expression levels and dynamics after SARS-CoV-2 infection have been barely investigated. The aim of this study was to develop an ACE2-targeting imaging agent as a noninvasive imaging tool to determine ACE2 regulation.

View Article and Find Full Text PDF

Low-density lipoprotein receptor class A domains (LA modules) are common ligand-binding domains of transmembrane receptors of approximately 40 amino acids that are involved in several cellular processes including endocytosis of extracellular targets. Due to their wide-ranging function and distribution among different transmembrane receptors, LA modules are of high interest for therapeutic applications. However, the efficient chemical synthesis of LA modules and derivatives is hindered by complications, many arising from the high abundance of aspartic acid and consequent aspartimide formation.

View Article and Find Full Text PDF

Ubiquitin and related ubiquitin-like proteins (Ubls) influence a variety of cellular pathways including protein degradation and response to viral infections. The chemical interrogation of these complex enzymatic cascades relies on the use of tailored activity-based probes (ABPs). Herein, we report the preparation of ABPs for ubiquitin, NEDD8, SUMO2 and ISG15 by selective acyl hydrazide modification.

View Article and Find Full Text PDF

As a result of high false positive rates in virtual screening campaigns, prospective hits must be synthesised for validation. When done manually, this is a time consuming and laborious process. Large "on-demand" virtual libraries (>7 × 10 members), suitable for preparation using capsule-based automated synthesis and commercial building blocks, were evaluated to determine their structural novelty.

View Article and Find Full Text PDF

Chemical protein synthesis can provide well-defined modified proteins. Herein, we report the chemical synthesis of plant-derived cysteine-rich secretory proteins and late-stage derivatization of the synthetic proteins. The syntheses were achieved with distinct chemoselective amide bond forming reactions - EPF2 by native chemical ligation (NCL), epidermal patterning factor (EPF) 1 by the α-ketoacid-hydroxylamine (KAHA) ligation, and fluorescent functionalization of their folded variants by potassium acyltrifluoroborate (KAT) ligation.

View Article and Find Full Text PDF

Although viruses have been successfully repurposed as vaccines, antibiotics, and anticancer therapeutics, they also raise concerns regarding genome integration and immunogenicity. Virus-like particles and non-viral protein cages represent a potentially safer alternative but often lack desired functionality. Here, we investigated the utility of a new enzymatic bioconjugation method, called lysine acylation using conjugating enzymes (LACE), to chemoenzymatically modify protein cages.

View Article and Find Full Text PDF

Daptomycin (DP) is effective against multiple drug-resistant Gram-positive pathogens because of its distinct mechanism of action. An accepted mechanism includes Ca-triggered aggregation of the DP molecule to form oligomers. DP and its oligomers have so far defied structural analysis at a molecular level.

View Article and Find Full Text PDF

Aberrations in protein modification with ubiquitin-fold modifier (UFM1) are associated with a range of diseases, but the biological function and regulation of this post-translational modification, known as UFMylation, remain enigmatic. To provide activity-based probes for UFMylation, we have developed a new method for the installation of electrophilic warheads at the C-terminus of recombinant UFM1. A C-terminal UFM1 acyl hydrazide was readily produced by selective intein cleavage and chemoselectively acylated by a variety of carboxylic acid anhydrides at pH 3, without detriment to the folded protein or reactions at unprotected amino acid side chains.

View Article and Find Full Text PDF
Article Synopsis
  • The synthesis of secreted cysteine-rich proteins (CRPs) is difficult due to issues like protein aggregation and unwanted disulfide bond formation.
  • Chemical synthesis helps reduce these CRPs with higher purity, which aids in proper folding and isolation.
  • The study reports the successful chemical synthesis of specific CRPs called LURE and their analogues, demonstrating that the synthesized proteins have similar bioactivity to those produced through traditional recombinant methods.
View Article and Find Full Text PDF

Ubiquitylation-the attachment of ubiquitin (Ub) to proteins in eukaryotic cells-involves a vast number of enzymes from three different classes, resulting in heterogeneous attachment sites and ubiquitin chains. Recently, we introduced lysine acylation using conjugating enzymes (LACE) in which ubiquitin or peptide thioester is site-specifically transferred to a short peptide tag by the SUMO E2 conjugating enzyme Ubc9. This process, however, suffers from slow kinetics-due to a rate-limiting thioester loading step-and the requirement for thioesters restricts its use to reactions.

View Article and Find Full Text PDF

Reactions that require strictly dry conditions are challenging to translate to a DNA-encoded library format. Controlled pore glass solid support-connected DNA oligonucleotide-aldehyde conjugates could be condensed with SnAP reagents and cyclized to various sp-rich heterocycles. The Boc-group of products provided a handle for product purification, and its facile removal under acidic conditions was tolerated by a chemically stabilized barcode.

View Article and Find Full Text PDF

We report the preparation of potassium acyltrifluoroborates (KATs) from widely available carboxylic acids. Mixed anhydrides of carboxylic acids were prepared using isobutyl chloroformate and transformed to the corresponding KATs using a commercial copper catalyst, B (pin) , and aqueous KHF . This method allows for the facile preparation of aliphatic, aromatic, and amino acid-derived KATs and is compatible with a variety of functional groups including alkenes, esters, halides, nitriles, and protected amines.

View Article and Find Full Text PDF

The molecular nanoscale organization of the surfaceome is a fundamental regulator of cellular signaling in health and disease. Technologies for mapping the spatial relationships of cell surface receptors and their extracellular signaling synapses would unlock theranostic opportunities to target protein communities and the possibility to engineer extracellular signaling. Here, we develop an optoproteomic technology termed LUX-MS that enables the targeted elucidation of acute protein interactions on and in between living cells using light-controlled singlet oxygen generators (SOG).

View Article and Find Full Text PDF