Cystic Fibrosis (CF), an inherited multi-system disease, is caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) that disrupt its ability to secrete anions from epithelia. Recovery of functional anion secretion may be curative for CF, so different components of the ion transport machinery have become attractive therapeutic targets. Several members of the SLC26 ion transporter family have been linked to epithelial ion flux, some through putative functional interactions with CFTR.
View Article and Find Full Text PDFMouse models lupus nephritis (LN) have provided important insights into disease pathogenesis, although none have been able to recapitulate all features of the human disease. Using comprehensive longitudinal analyses, we characterized a novel accelerated mouse model of lupus using pristane treatment in SNF1 (SWR X NZB F1) lupus prone mice (pristane-SNF1 mice). Pristane treatment in SNF1 mice accelerated the onset and progression of proteinuria, autoantibody production, immune complex deposition and development of renal lesions.
View Article and Find Full Text PDFDifferential DNA methylation of the paternal and maternal alleles regulates the parental origin-specific expression of imprinted genes in mammals. The methylation imprints are established in male and female germ cells during gametogenesis, and the de novo DNA methyltransferase DNMT3A and its cofactor DNMT3L are required in this process. However, the mechanisms underlying locus- and parental-specific targeting of the de novo DNA methylation machinery in germline imprinting are poorly understood.
View Article and Find Full Text PDFHistone methylation and DNA methylation cooperatively regulate chromatin structure and gene activity. How these two systems coordinate with each other remains unclear. Here we study the biological function of lysine-specific demethylase 1 (LSD1, also known as KDM1 and AOF2), which has been shown to demethylate histone H3 on lysine 4 (H3K4) and lysine 9 (H3K9).
View Article and Find Full Text PDFDot1 is an evolutionarily conserved histone methyltransferase specific for lysine 79 of histone H3 (H3K79). In Saccharomyces cerevisiae, Dot1-mediated H3K79 methylation is associated with telomere silencing, meiotic checkpoint control, and DNA damage response. The biological function of H3K79 methylation in mammals, however, remains poorly understood.
View Article and Find Full Text PDF