Publications by authors named "Jeffrey B McQuaid"

Article Synopsis
  • - Iron is a crucial micronutrient for phytoplankton growth, playing key roles in processes like photosynthesis and nitrate assimilation, but its limited availability in seawater often restricts marine productivity.
  • - Phytoplankton have developed various strategies to efficiently uptake and store iron, despite their high cellular iron needs, and can adjust their iron requirements during stressful conditions.
  • - Advances in genomics and molecular biology are enhancing our understanding of iron-related proteins and unique genes involved in iron acquisition, while also highlighting the connections between iron uptake and external factors like boundary layer chemistry and microbial interactions.
View Article and Find Full Text PDF

Unlabelled: The model pennate diatom is able to assimilate a range of iron sources. It therefore provides a platform to study different mechanisms of iron processing concomitantly in the same cell. In this study, we follow the localization of three iron starvation induced proteins (ISIPs) in vivo, driven by their native promoters and tagged by fluorophores in an engineered line of .

View Article and Find Full Text PDF

In vast areas of the ocean, the scarcity of iron controls the growth and productivity of phytoplankton. Although most dissolved iron in the marine environment is complexed with organic molecules, picomolar amounts of labile inorganic iron species (labile iron) are maintained within the euphotic zone and serve as an important source of iron for eukaryotic phytoplankton and particularly for diatoms. Genome-enabled studies of labile iron utilization by diatoms have previously revealed novel iron-responsive transcripts, including the ferric iron-concentrating protein ISIP2A, but the mechanism behind the acquisition of picomolar labile iron remains unknown.

View Article and Find Full Text PDF

Centromeres are essential for cell division and growth in all eukaryotes, and knowledge of their sequence and structure guides the development of artificial chromosomes for functional cellular biology studies. Centromeric proteins are conserved among eukaryotes; however, centromeric DNA sequences are highly variable. We combined forward and reverse genetic approaches with chromatin immunoprecipitation to identify centromeres of the model diatom We observed 25 unique centromere sequences typically occurring once per chromosome, a finding that helps to resolve nuclear genome organization and indicates monocentric regional centromeres.

View Article and Find Full Text PDF

Southern Ocean primary productivity plays a key role in global ocean biogeochemistry and climate. At the Southern Ocean sea ice edge in coastal McMurdo Sound, we observed simultaneous cobalamin and iron limitation of surface water phytoplankton communities in late Austral summer. Cobalamin is produced only by bacteria and archaea, suggesting phytoplankton-bacterial interactions must play a role in this limitation.

View Article and Find Full Text PDF

Numerous cellular functions including respiration require iron. Plants and phytoplankton must also maintain the iron-rich photosynthetic electron transport chain, which most likely evolved in the iron-replete reducing environments of the Proterozoic ocean [1]. Iron bioavailability has drastically decreased in the contemporary ocean [1], most likely selecting for the evolution of efficient iron acquisition mechanisms among modern phytoplankton.

View Article and Find Full Text PDF

We performed a metagenomic survey (6.6 Gbp of 454 sequence data) of Southern Ocean (SO) microorganisms during the austral summer of 2007-2008, examining the genomic signatures of communities across a latitudinal transect from Hobart (44°S) to the Mertz Glacier, Antarctica (67°S). Operational taxonomic units (OTUs) of the SAR11 and SAR116 clades and the cyanobacterial genera Prochlorococcus and Synechococcus were strongly overrepresented north of the Polar Front (PF).

View Article and Find Full Text PDF

The ubiquitous SAR11 bacterial clade is the most abundant type of organism in the world's oceans, but the reasons for its success are not fully elucidated. We analysed 128 surface marine metagenomes, including 37 new Antarctic metagenomes. The large size of the data set enabled internal transcribed spacer (ITS) regions to be obtained from the Southern polar region, enabling the first global characterization of the distribution of SAR11, from waters spanning temperatures -2 to 30°C.

View Article and Find Full Text PDF