Publications by authors named "Jeffrey B Graham"

In fish, regional endothermy (i.e., the capacity to significantly elevate tissue temperatures above ambient via vascular heat exchangers) in the red swimming muscles (RM) has evolved only in a few marine groups (e.

View Article and Find Full Text PDF

Geochemical approximation of Earth's atmospheric O2 level over geologic time prompts hypotheses linking hyper- and hypoxic atmospheres to transformative events in the evolutionary history of the biosphere. Such correlations, however, remain problematic due to the relative imprecision of the timing and scope of oxygen change and the looseness of its overlay on the chronology of key biotic events such as radiations, evolutionary innovation, and extinctions. There are nevertheless general attributions of atmospheric oxygen concentration to key evolutionary changes among groups having a primary dependence upon oxygen diffusion for respiration.

View Article and Find Full Text PDF

The polypterids (bichirs and ropefish) are extant basal actinopterygian (ray-finned) fishes that breathe air and share similarities with extant lobe-finned sarcopterygians (lungfishes and tetrapods) in lung structure. They are also similar to some fossil sarcopterygians, including stem tetrapods, in having large paired openings (spiracles) on top of their head. The role of spiracles in polypterid respiration has been unclear, with early reports suggesting that polypterids could inhale air through the spiracles, while later reports have largely dismissed such observations.

View Article and Find Full Text PDF

The Japanese mudskipper (Periophthalmus modestus), an amphibious fish that possesses many respiratory and locomotive specializations for sojourns onto land, was used as a model to study how changing atmospheric oxygen concentrations during the middle and late Paleozoic Era (400-250 million years ago) may have influenced the emergence and subsequent radiation of the first tetrapods. The effects of different atmospheric oxygen concentrations (hyperoxia = 35%, normoxia = 21%, and hypoxia = 7% O2) on terrestrial performance were tested during exercise on a terrestrial treadmill and during recovery from exhaustive exercise. Endurance and elevated post-exercise oxygen consumption (EPOC; the immediate O2 debt repaid post-exercise) correlated with atmospheric oxygen concentration indicating that when additional oxygen is available P.

View Article and Find Full Text PDF

For ram-gill ventilators such as tunas and mackerels (family Scombridae) and billfishes (families Istiophoridae, Xiphiidae), fusions binding the gill lamellae and filaments prevent gill deformation by a fast and continuous ventilatory stream. This study examines the gills from 28 scombrid and seven billfish species in order to determine how factors such as body size, swimming speed, and the degree of dependence upon ram ventilation influence the site of occurrence and type of fusions. In the family Scombridae there is a progressive increase in the reliance on ram ventilation that correlates with the elaboration of gill fusions.

View Article and Find Full Text PDF

Ram ventilation and gill function in a lamnid shark, the shortfin mako, Isurus oxyrinchus, were studied to assess how gill structure may affect the lamnid-tuna convergence for high-performance swimming. Despite differences in mako and tuna gill morphology, mouth gape and basal swimming speeds, measurements of mako O(2) utilization at the gills (53.4±4.

View Article and Find Full Text PDF

Reproduction on mudflats requires that eggs are protected from different environmental challenges during development and hatch when environmental conditions are favorable for survival of juveniles. Mudskippers are air-breathing, amphibious gobies of the subfamily Oxudercinae, and one of a few vertebrates that reside on mudflats. They excavate burrows in mudflats and deposit eggs in them.

View Article and Find Full Text PDF

The common thresher shark () is a secondary target species of the California drift gillnet fishery (CA-DGN) and supports a growing recreational fishery in California waters. This study used archival tags to examine the movement patterns and habitat preferences of common threshers of the size range captured in the CA-DGN (>120 cm fork length). Depth and temperature-logging archival tags were deployed on 57 subadult and adult common threshers in the Southern California Bight.

View Article and Find Full Text PDF

This study examines the functional gill morphology of the shortfin mako, Isurus oxyrinchus, to determine the extent to which its gill structure is convergent with that of tunas for specializations required to increase gas exchange and withstand the forceful branchial flow induced by ram ventilation. Mako gill structure is also compared to that of the blue shark, Prionace glauca, an epipelagic species with lower metabolic requirements and a reduced dependence on fast, continuous swimming to ventilate the gills. The gill surface area of the mako is about one-half that of a comparably sized tuna, but more than twice that of the blue shark and other nonlamnid shark species.

View Article and Find Full Text PDF

This paper traces the research history of fish ventilation from its origins in the early 1700s to the present with emphasis on the work of George M. Hughes, who is considered by many to be the founder of the modern era of fish respiratory science. A particularly important year in the timeline for fish respiratory studies was 1960, when Hughes presented the currently accepted biomechanical model driving fish ventilation.

View Article and Find Full Text PDF

This comparative study of the gill morphometrics in scombrids (tunas, bonitos, and mackerels) and billfishes (marlins, swordfish) examines features of gill design related to high rates of gas transfer and the high-pressure branchial flow associated with fast, continuous swimming. Tunas have the largest relative gill surface areas of any fish group, and although the gill areas of non-tuna scombrids and billfishes are smaller than those of tunas, they are also disproportionally larger than those of most other teleosts. The morphometric features contributing to the large gill surface areas of these high-energy demand teleosts include: 1) a relative increase in the number and length of gill filaments that have, 2) a high lamellar frequency (i.

View Article and Find Full Text PDF

The air-breathing organ (ABO) of the Atlantic tarpon is formed by four parallel ridges of alveolar-like respiratory tissue that extend along the length of the physostomous gas bladder. The large and complex surface of each ridge is formed by a cartilage matrix that is completely infiltrated by a thin respiratory epithelium. Comparison of a size series of specimens demonstrates isometric growth of the ABO, and histological and SEM studies show comparable levels of tissue complexity.

View Article and Find Full Text PDF

Intertidal mudflats are highly productive ecosystems that impose severe environmental challenges on their occupants due to tidal oscillations and extreme shifts in habitat conditions. Reproduction on mudflats requires protection of developing eggs from thermal and salinity extremes, O(2) shortage, dislodgement by currents, siltation and predation. Mudskippers are air-breathing, amphibious fishes, and one of few vertebrates that reside on mudflats.

View Article and Find Full Text PDF

T1-weighted magnetic resonance imaging (MRI) in conjunction with image and segmentation analysis (i.e., the process of digitally partitioning tissues based on specified MR image characteristics) was evaluated as a noninvasive alternative for differentiating muscle fiber types and quantifying the amounts of slow, red aerobic muscle in the shortfin mako shark (Isurus oxyrinchus) and the salmon shark (Lamna ditropis).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated mitochondrial proton leak as a heat source in the shortfin mako shark's (Isurus oxyrinchus) locomotor muscle and liver, focusing on how it differs from ectothermic species like the blue and leopard sharks.
  • Researchers hypothesized that the proton leak rates in the mako shark would be higher compared to the ectothermic sharks, assessing this through respiration rate and membrane potential in isolated mitochondria at 20°C.
  • Findings showed no significant difference in proton leak rates at a specific membrane potential between endothermic and ectothermic sharks, but shortfin mako sharks exhibited higher succinate-stimulated respiration rates and membrane potentials, suggesting a potential for greater mitochondrial activity in vivo.
View Article and Find Full Text PDF
Article Synopsis
  • Regional endothermy in fish, seen in species like lamnid sharks and tunas, helps them conserve metabolic heat for their muscles, eyes, brain, and viscera, allowing for better performance in varying water temperatures.
  • Research suggests that endothermy enhances thermal niche expansion, enabling these fish to thrive in broader temperature ranges, although it's unclear if it was essential for this expansion.
  • Despite the apparent advantages of maintaining higher muscle temperatures, studies reveal no direct evidence that endothermy improves swimming performance or efficiency, indicating that it comes with increased metabolic costs.
View Article and Find Full Text PDF

A laboratory burrow and mudflat system was used to examine aspects of burrow air-phase maintenance and utilization by the amphibious mudskipper Scartelaos histophorus. While confined to its burrow during simulated 'high tide', this species respires both aquatically and aerially, in the latter case utilizing an air phase it had established by transporting air into the burrow during simulated 'low tide'. Over the course of 'high-tide' confinement, burrow-water P(O2) declines, making the air phase more important for respiration; the burrow-water O2 tension eliciting air-phase respiration is 4.

View Article and Find Full Text PDF

The air-breathing fishes have heuristic importance as possible models for the Paleozoic evolution of vertebrate air breathing and the transition to land. A recent hypothesis about this transition suggests that the diverse assemblage of marine amphibious fishes occurring primarily in tropical, high intertidal zone habitats are analogs of early tetrapods and that the intertidal zone, not tropical freshwater lowlands, was the springboard habitat for the Devonian land transition by vertebrates. Here we argue that selection pressures imposed by life in the intertidal zone are insufficient to have resulted in the requisite aerial respiratory capacity or the degree of separation from water required for the vertebrate land transition.

View Article and Find Full Text PDF

Thunniform swimming, the capacity to conserve metabolic heat in red muscle and other body regions (regional endothermy), an elevated metabolic rate and other physiological rate functions, and a frequency-modulated cardiac output distinguish tunas from most other fishes. These specializations support continuous, relatively fast swimming by tunas and minimize thermal barriers to habitat exploitation, permitting niche expansion into high latitudes and to ocean depths heretofore regarded as beyond their range.

View Article and Find Full Text PDF

Sturgeons are primitive bony fishes and their hearts have structural features found in other primitive fishes. Sturgeons have a pericardioperitoneal canal (PPC), a one-way conduit into the peritoneum. A PPC also occurs in elasmobranchs (sharks and rays) and studies with that group demonstrate that pericardial pressure and pericardial fluid loss via the PPC affect stroke volume.

View Article and Find Full Text PDF

A comparative echocardiographic study was carried out on five shark species that differ in heart morphology and in aspects of their behavior and natural history. The study contrasted the ventricular function in the highly active mako shark (heart type IV) and four other sharks (heart type III) that differ in activity levels (i.e.

View Article and Find Full Text PDF

Tunas (family: Scombridae, Tribe: Thunnini) exhibit anatomical, physiological, and biochemical adaptations that dramatically increase the ability of their cardiorespiratory systems to transfer oxygen from the water to the tissues. In the present study the vascular anatomy of the skipjack tuna, Katsuwonus pelamis, gill was examined by light and scanning electron microscopic analysis of methyl methacrylate vascular corrosion replicas prepared under physiological pressure. The gill filament contains three distinct blood pathways, respiratory, interlamellar, and nutrient.

View Article and Find Full Text PDF

The swimming kinematics of the eastern Pacific bonito Sarda chiliensis at a range of sustained speeds were analyzed to test the hypothesis that the bonito's swimming mode differs from the thunniform locomotor mode of tunas. Eight bonito (fork length FL 47.5+/-2.

View Article and Find Full Text PDF