Publications by authors named "Jeffrey Ashton"

Article Synopsis
  • - The study assessed the effectiveness of an FDA-cleared AI tool (Koios DS Thyroid) for identifying malignancy in thyroid nodules via ultrasound by analyzing 649 nodules and their pathology results.
  • - It compared four groups: AI with and without an adapter, clinical radiology reports, and radiology reports combined with the AI-adapter, focusing on metrics like sensitivity and specificity.
  • - Results indicated that the AI with adapter performed equally to radiologists in overall accuracy but had better specificity and decreased sensitivity; the best outcomes were achieved when combining both radiology reports and the AI-adapter.
View Article and Find Full Text PDF

Purpose: To compare liver fat quantification between MRI and photon-counting CT (PCCT).

Method: A cylindrical phantom with inserts containing six concentrations of oil (0, 10, 20, 30, 50 and 100%) and oil-iodine mixtures (0, 10, 20, 30 and 50% fat +3 mg/mL iodine) was imaged with a PCCT (NAEOTOM Alpha) and a 1.5 T MRI system (MR 450w, IDEAL-IQ sequence), using clinical parameters.

View Article and Find Full Text PDF

An 18-year-old woman with a history of Down syndrome (DS) presented with left upper extremity weakness. Neurological examination revealed moderate hypotonia throughout, with mild spasticity of the left ankle. She had 2/5 left upper and lower extremity strength, mild pronation with drift in the left arm and 3+ deep tendon reflexes in the left biceps, brachioradialis, patellar and Achilles.

View Article and Find Full Text PDF

Computed tomography (CT) is the standard imaging test used for the screening and assessment of suspected lung cancer, but distinguishing malignant from benign nodules by CT is an ongoing challenge. Consequently, a large number of avoidable invasive procedures are performed on patients with benign nodules in order to exclude malignancy. Improving cancer discrimination by non-invasive imaging could reduce the need for invasive diagnostics.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) are emerging as promising agents for both cancer therapy and computed tomography (CT) imaging. AuNPs absorb x-rays and subsequently release low-energy, short-range photoelectrons during external beam radiation therapy (RT), increasing the local radiation dose. When AuNPs are near tumor vasculature, the additional radiation dose can lead to increased vascular permeability.

View Article and Find Full Text PDF

Computed tomography (CT) is one of the most valuable modalities for in vivo imaging because it is fast, high-resolution, cost-effective, and non-invasive. Moreover, CT is heavily used not only in the clinic (for both diagnostics and treatment planning) but also in preclinical research as micro-CT. Although CT is inherently effective for lung and bone imaging, soft tissue imaging requires the use of contrast agents.

View Article and Find Full Text PDF

Nanomedicine has attracted increasing attention in recent years, because it offers great promise to provide personalized diagnostics and therapy with improved treatment efficacy and specificity. In this study, we developed a gold nanostar (GNS) probe for multi-modality theranostics including surface-enhanced Raman scattering (SERS) detection, x-ray computed tomography (CT), two-photon luminescence (TPL) imaging, and photothermal therapy (PTT). We performed radiolabeling, as well as CT and optical imaging, to investigate the GNS probe's biodistribution and intratumoral uptake at both macroscopic and microscopic scales.

View Article and Find Full Text PDF

Noninvasive small animal imaging techniques are essential for evaluation of cardiac disease and potential therapeutics. A novel preclinical iodinated contrast agent called eXIA 160 has recently been developed, which has been evaluated for micro-CT cardiac imaging. eXIA 160 creates strong contrast between blood and tissue immediately after its injection and is subsequently taken up by the myocardium and other metabolically active tissues over time.

View Article and Find Full Text PDF

Purpose: To provide additional functional information for tumor characterization, we investigated the use of dual-energy computed tomography for imaging murine lung tumors. Tumor blood volume and vascular permeability were quantified using gold and iodine nanoparticles. This approach was compared with a single contrast agent/single-energy CT method.

View Article and Find Full Text PDF

This work examines the metallization of folded DNA, known as DNA origami, as an enabling step toward the use of such DNA as templates for nanoelectronic circuits. DNA origami, a simple and robust method for creating a wide variety of shapes and patterns, makes possible the increased complexity and flexibility needed for both the design and assembly of useful circuit templates. In addition, selective metallization of the DNA template is essential for circuit fabrication.

View Article and Find Full Text PDF

Designs for DNA origami have previously been limited by the size of the available single-stranded genomes for scaffolds. Here we present a straightforward method for the production of scaffold strands having various lengths, using polymerase chain reaction amplification followed by strand separation via streptavidin-coated magnetic beads. We have applied this approach in assembling several distinct DNA nanostructures that have thin ( approximately 10 nm) features and branching points, making them potentially useful templates for nanowires in complex electronic circuitry.

View Article and Find Full Text PDF