Pediatric solid and central nervous system tumors are the leading cause of cancer-related death among children. Identifying new targeted therapies necessitates the use of pediatric cancer models that faithfully recapitulate the patient's disease. However, the generation and characterization of pediatric cancer models has significantly lagged behind adult cancers, underscoring the urgent need to develop pediatric-focused cell line resources.
View Article and Find Full Text PDFPediatric high-grade gliomas (pHGGs) are aggressive diseases with poor outcomes. The diverse molecular heterogeneity in these rare tumors and inadequate tumor models have limited the development of effective therapies. In this issue of the JCI, Haase et al.
View Article and Find Full Text PDFAtypical teratoid/rhabdoid tumors (AT/RT) are the most common malignant brain tumors of infancy and have a dismal 4-year event-free survival (EFS) of 37%. We have previously shown that mTOR activation contributes to AT/RT's aggressive growth and poor survival. Targeting the mTOR pathway with the dual mTORC1/2 inhibitor TAK-228 slows tumor growth and extends survival in mice bearing orthotopic xenografts.
View Article and Find Full Text PDFThe mitogen-activated protein kinase pathway is one of the most frequently altered pathways in cancer. It is involved in the control of cell proliferation, invasion, and metabolism, and can cause resistance to therapy. A number of aggressive malignancies, including melanoma, colon cancer, and glioma, are driven by a constitutively activating missense mutation (V600E) in the v-Raf murine sarcoma viral oncogene homolog B (BRAF) component of the pathway.
View Article and Find Full Text PDFCentral nervous system tumor with BCL6-corepressor internal tandem duplication (CNS-BCOR ITD) is a malignant entity characterized by recurrent alterations in exon 15 encoding the essential binding domain for the polycomb repressive complex (PRC). In contrast to deletion or truncating mutations seen in other tumors, BCOR expression is upregulated in CNS-BCOR ITD, and a distinct oncogenic mechanism has been suggested. However, the effects of this change on the biology of neuroepithelial cells is poorly understood.
View Article and Find Full Text PDFPurpose: Atypical teratoid/rhabdoid tumors (AT/RT) are aggressive infantile brain tumors with poor survival. Recent advancements have highlighted significant molecular heterogeneity in AT/RT with an aggressive subgroup featuring overexpression of the proto-oncogene. We perform the first comprehensive metabolic profiling of patient-derived AT/RT cell lines to identify therapeutic susceptibilities in high MYC-expressing AT/RT.
View Article and Find Full Text PDFBackground: Pediatric low-grade glioma (pLGG) often initially responds to front-line therapies such as carboplatin, but more than 50% of treated tumors eventually progress and require additional therapy. With the discovery that pLGG often contains mammalian target of rapamycin (mTOR) activation, new treatment modalities and combinations are now possible for patients. The purpose of this study was to determine if carboplatin is synergistic with the mTOR complex 1 inhibitor everolimus in pLGG.
View Article and Find Full Text PDFBackground: Atypical teratoid/rhabdoid tumors (AT/RTs) are deadly pediatric brain tumors driven by LIN28. Mammalian target of rapamycin (mTOR) is activated in many deadly, drug-resistant cancers and governs important cellular functions such as metabolism and survival. LIN28 regulates mTOR in normal cells.
View Article and Find Full Text PDFDiffuse intrinsic pontine glioma (DIPG) is an invasive and treatment-refractory pediatric brain tumor. Primary DIPG tumors harbor a number of mutations including alterations in PTEN, AKT, and PI3K and exhibit activation of mammalian Target of Rapamycin Complex 1 and 2 (mTORC1/2). mTORC1/2 regulate protein translation, cell growth, survival, invasion, and metabolism.
View Article and Find Full Text PDFTaspase1 was identified as the threonine endopeptidase that cleaves mixed-lineage leukemia (MLL) for proper Hox gene expression in vitro. To investigate its functions in vivo, we generated Taspase1(-/-) mice. Taspase1 deficiency results in noncleavage (nc) of MLL and MLL2 and homeotic transformations.
View Article and Find Full Text PDFArginine methylation can affect both nucleocytoplasmic transport and protein-protein interactions of RNA-binding proteins. These effects are seen in cells that lack the yeast hnRNP methyltransferase (HMT1), raising the question of whether effects on specific proteins are direct or indirect. The presence of multiple arginines in individual methylated proteins also raises the question of whether overall methylation or methylation of a subset of arginines affects protein function.
View Article and Find Full Text PDF