Proc Natl Acad Sci U S A
August 2009
During antigen recognition by T cells, signaling molecules on the T cell engage ligands on the antigen-presenting cell and organize into spatially distinctive patterns. These are collectively known as the immunological synapse (IS). Causal relationships between large-scale spatial organization and signal transduction have previously been established.
View Article and Find Full Text PDFThe phospholipid bilayers of living cell membranes exist almost universally in a liquid state. This enables motion and spatial reorganization of membrane components on multiple length scales, which is an essential feature of many biological processes. There is great interest in the development of molecularly defined interfaces between synthetic materials and living cells.
View Article and Find Full Text PDFRoutine quantitative analysis of biomolecule surface density by fluorescence microscopy has been limited by the difficulty of preparing appropriate calibration standards that relate measured fluorescence intensity to actual surface concentration. Supported lipid bilayers are planar fluid films of uniform density and composition which can incorporate a variety of lipidated fluorophores and work well as fluorescence standards. Here, we outline a straightforward strategy to calibrate digital micrographs of fluorescent surfaces such as planar cellular junctions for comparison to supported bilayer standards.
View Article and Find Full Text PDFAlkanethiol modified gold electrodes patterned over a silica surface provided a dual hydrophobic/hydrophilic surface suitable for phospholipid monolayer and bilayer formation over the alkylated gold and glass surfaces, respectively. The phospholipid monolayer and bilayer were connected, allowing free diffusion of lipids within both leaflets of the glass-supported bilayer over the alkanethiol/gold-to-glass interface. Application of large alternating current fields to these electrodes irreversibly switched the gold electrodes to diffusion barriers.
View Article and Find Full Text PDFNickel-chelating lipids are general tools for anchoring polyhistidine-tagged proteins to supported lipid bilayers (SLBs), but controversy exists over the stability of the protein-lipid attachment. Here, we show that chelator lipids are suitable anchors for building stable, biologically active surfaces but that a simple Langmuirian model is insufficient to describe their behavior. Desorption kinetics from chelator lipids are governed by the valency of surface binding: monovalently bound proteins desorb within minutes (t1/2 approximately 6 min), whereas polyvalently bound species remain bound for hours (t1/2 approximately 12 h).
View Article and Find Full Text PDFThe nicotinic acetylcholine receptor (nAChR) is one of five structurally related membrane proteins required for communication between approximately 10(12) cells of the mammalian nervous system. The receptor is inhibited by both therapeutic agents and abused drugs. Understanding the mechanism of noncompetitive allosteric inhibitors of the nicotinic acetylcholine receptor is a long-standing and intensely investigated problem.
View Article and Find Full Text PDF