Publications by authors named "Jeffery W Kelly"

Kinetic stabilization of amyloidogenic immunoglobulin light chains (LCs) through small molecule binding may become the first treatment for the proteinopathy component of light chain amyloidosis (AL). Kinetic stabilizers selectively bind to the native state over the misfolding transition state, slowing denaturation. Prior λ full-length LC dimer (FL LC) kinetic stabilizers exhibited considerable plasma protein binding.

View Article and Find Full Text PDF

We previously showed that the proteostasis regulator compound AA147 (-(2-hydroxy-5-methylphenyl)benzenepropanamide) potently protects against neurotoxic insults, such as glutamate-induced oxytosis. Though AA147 is a selective activator of the ATF6 arm of the unfolded protein response in non-neuronal cells, AA147-dependent protection against glutamate toxicity in cells of neuronal origin is primarily mediated through activation of the NRF2 oxidative stress response. AA147 activates NRF2 through a mechanism involving metabolic activation of AA147 by endoplasmic reticulum (ER) oxidases, affording an AA147-based quinone methide that covalently targets the NRF2 repressor protein KEAP1.

View Article and Find Full Text PDF

Kinetic stability is thought to be an attribute of proteins that require a long lifetime, such as the transporter of thyroxine and holo retinol-binding protein or transthyretin (TTR) functioning in the bloodstream, cerebrospinal fluid, and vitreous humor. TTR evolved from ancestral enzymes known as TTR-related proteins (TRPs). Here, we develop a rate-expansion approach that allows unfolding rates to be measured directly at low denaturant concentration, revealing that kinetic stability exists in the TRP (EcTRP), even though the enzyme structure is more energetically frustrated and has a more mutation-sensitive folding mechanism than human TTR.

View Article and Find Full Text PDF

Macroautophagy is a conserved cellular degradation pathway that, upon upregulation, confers resilience toward various stress conditions, including protection against proteotoxicity associated with neurodegenerative diseases, leading to cell survival. Monitoring autophagy regulation in living cells is important to understand its role in physiology and pathology, which remains challenging. Here, we report that when HaloTag is expressed within a cell of interest and reacts with tetramethylrhodamine (TMR; its ligand attached to a fluorophore), the rate of fluorescent TMR-HaloTag conjugate accumulation in autophagosomes and lysosomes, observed by fluorescence microscopy, reflects the rate of autophagy.

View Article and Find Full Text PDF

Aging is a prominent risk factor for Alzheimer's disease (AD), but the cellular mechanisms underlying neuronal phenotypes remain elusive. Both accumulation of amyloid plaques and neurofibrillary tangles in the brain and age-linked organelle deficits are proposed as causes of AD phenotypes but the relationship between these events is unclear. Here, we address this question using a transdifferentiated neuron (tNeuron) model directly from human dermal fibroblasts.

View Article and Find Full Text PDF

Background: ATTR (ATTRv) amyloidosis neuropathy is characterized by progressive sensorimotor and autonomic nerve degeneration secondary to amyloid deposition caused by a misfolded transthyretin protein (TTR). Small nerve fiber neuropathy is an early clinical manifestation of this disease resulting from the dysfunction of the Aδ and C small nerve fibers. Tafamidis, a selective TTR stabilizer, has proven its efficacy in the earlier stages of hATTR.

View Article and Find Full Text PDF

Mutations in myelin protein zero (MPZ) are generally associated with Charcot-Marie-Tooth type 1B (CMT1B) disease, one of the most common forms of demyelinating neuropathy. Pathogenesis of some MPZ mutants, such as S63del and R98C, involves the misfolding and retention of MPZ in the endoplasmic reticulum (ER) of myelinating Schwann cells. To cope with proteotoxic ER-stress, Schwann cells mount an unfolded protein response (UPR) characterized by activation of the PERK, ATF6 and IRE1α/XBP1 pathways.

View Article and Find Full Text PDF
Article Synopsis
  • Advances in genomics have uncovered thousands of small open reading frames (smORFs) that encode micropeptides or microproteins, which were previously overlooked by traditional methods.
  • CYREN1 is a specific characterizable microprotein that plays a role in regulating double-strand break repair in cells by interacting with the Ku70/80 heterodimer, crucial for DNA repair processes.
  • The study reveals that CYREN1 is intrinsically disordered, allowing it to engage with various proteins, including a new interaction with SF3B1, suggesting a possible scaffolding role that connects DNA repair and splicing processes.
View Article and Find Full Text PDF

Pharmacological activation of the activating transcription factor 6 (ATF6) arm of the unfolded protein response (UPR) has proven useful for ameliorating proteostasis deficiencies in cellular and mouse models of numerous etiologically diverse diseases. Previous high-throughput screening efforts identified the small molecule AA147 as a potent and selective ATF6 activating compound that operates through a mechanism involving metabolic activation of its 2-amino--cresol substructure affording a quinone methide, which then covalently modifies a subset of endoplasmic reticulum (ER) protein disulfide isomerases (PDIs). Another compound identified in this screen, AA132, also contains a 2-amino--cresol moiety; however, this compound showed less transcriptional selectivity, instead globally activating all three arms of the UPR.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are linked in the onset and pathogenesis of numerous diseases. This has led to considerable interest in defining the mechanisms responsible for regulating mitochondria during ER stress. The PERK signaling arm of the unfolded protein response (UPR) has emerged as a prominent ER stress-responsive signaling pathway that regulates diverse aspects of mitochondrial biology.

View Article and Find Full Text PDF

Immunoglobulin light chain amyloidosis (AL) is a cancer of plasma cells that secrete unstable full-length immunoglobulin light chains. These light chains misfold and aggregate, often with aberrant endoproteolysis, leading to organ toxicity. AL is currently treated by pharmacological elimination of the clonal plasma cells.

View Article and Find Full Text PDF
Article Synopsis
  • Transthyretin amyloid cardiomyopathy (ATTR-CM) is a significant cause of heart failure in older adults, often linked to a specific genetic variant (pV142I) primarily found in individuals of West African descent.
  • The SCAN-MP study aims to determine how prevalent ATTR-CM is in older Black and Caribbean Hispanic patients with heart failure, using noninvasive imaging techniques.
  • This study is the largest of its kind focusing on cardiac amyloidosis in these populations and could lead to better treatment strategies using the approved drug tafamidis.
View Article and Find Full Text PDF

The role of proteostasis and organelle homeostasis dysfunction in human aging and Alzheimer's disease (AD) remains unclear. Analyzing proteome-wide changes in human donor fibroblasts and their corresponding transdifferentiated neurons (tNeurons), we find aging and AD synergistically impair multiple proteostasis pathways, most notably lysosomal quality control (LQC). In particular, we show that ESCRT-mediated lysosomal repair defects are associated with both sporadic and PSEN1 familial AD.

View Article and Find Full Text PDF

The condition of having a healthy, functional proteome is known as protein homeostasis, or proteostasis. Establishing and maintaining proteostasis is the province of the proteostasis network, approximately 2,700 components that regulate protein synthesis, folding, localization, and degradation. The proteostasis network is a fundamental entity in biology that is essential for cellular health and has direct relevance to many diseases of protein conformation.

View Article and Find Full Text PDF

Pharmacological activation of the activating transcription factor 6 (ATF6) arm of the Unfolded Protein Response (UPR) has proven useful for ameliorating proteostasis deficiencies in a variety of etiologically diverse diseases. Previous high-throughput screening efforts identified the small molecule AA147 as a potent and selective ATF6 activating compound that operates through a mechanism involving metabolic activation of its 2-amino- -cresol substructure affording a quinone methide, which then covalently modifies a subset of ER protein disulfide isomerases (PDIs). Intriguingly, another compound identified in this screen, AA132, also contains a 2-amino- -cresol moiety; however, this compound showed less transcriptional selectivity, instead globally activating all three arms of the UPR.

View Article and Find Full Text PDF

Background: Hereditary transthyretin (TTR) amyloidosis (ATTRv) initially presents as a polyneuropathy and/or a cardiomyopathy. Central nervous system (CNS) pathology in ATTRv amyloidosis, including focal neurological episodes, dementia, cerebrovascular bleeding, and seizures, appears around a decade later. Wild-type (WT) TTR amyloidosis (ATTRwt) causes a cardiomyopathy.

View Article and Find Full Text PDF

Genetic variation in alpha-1 antitrypsin (AAT) causes AAT deficiency (AATD) through liver aggregation-associated gain-of-toxic pathology and/or insufficient AAT activity in the lung manifesting as chronic obstructive pulmonary disease (COPD). Here, we utilize 71 AATD-associated variants as input through Gaussian process (GP)-based machine learning to study the correction of AAT folding and function at a residue-by-residue level by pharmacological activation of the ATF6 arm of the unfolded protein response (UPR). We show that ATF6 activators increase AAT neutrophil elastase (NE) inhibitory activity, while reducing polymer accumulation for the majority of AATD variants, including the prominent Z variant.

View Article and Find Full Text PDF

Transthyretin (TTR) dissociation is the rate limiting step for both aggregation and subunit exchange. Kinetic stabilisers, small molecules that bind to the native tetrameric structure of TTR, slow TTR dissociation and inhibit aggregation. One such stabiliser is the non-steroidal anti-inflammatory drug (NSAID), diflunisal, which has been repurposed to treat TTR polyneuropathy.

View Article and Find Full Text PDF

Background: TTR aggregation causes hereditary transthyretin (TTR) polyneuropathy (ATTRv-PN) in individuals with destabilised TTR variants. ATTRv-PN can be treated with ligands that bind TTR and prevent aggregation. One such ligand, tafamidis, is widely approved to treat ATTRv-PN.

View Article and Find Full Text PDF
Article Synopsis
  • Lumbar spinal stenosis (LSS) surgery often involves the resection of ligamentum flavum, and this study examined the potential presence of transthyretin (TTR) amyloid in older patients, which could be a modifiable factor in LSS cases.
  • In a study of 47 older adults undergoing lumbar spine decompression, amyloid was found in 34% of participants, with a higher prevalence in those aged 75 and older.
  • The study identified TTR as the precursor protein in a majority of amyloid cases, but clinical and quality-of-life measures did not show significant differences between patients with or without amyloid.
View Article and Find Full Text PDF

Non-native immunoglobulin light chain conformations, including aggregates, appear to cause light chain amyloidosis pathology. Despite significant progress in pharmacological eradication of the neoplastic plasma cells that secrete these light chains, in many patients impaired organ function remains. The impairment is apparently due to a subset of resistant plasma cells that continue to secrete misfolding-prone light chains.

View Article and Find Full Text PDF

The extracellular aggregation of destabilized transthyretin (TTR) variants is implicated in the onset and pathogenesis of familial TTR-related amyloid diseases. One strategy to reduce the toxic, extracellular aggregation of TTR is to decrease the population of aggregation-prone proteins secreted from mammalian cells. The stress-independent activation of the unfolded protein response (UPR)-associated transcription factor ATF6 preferentially decreases the secretion and subsequent aggregation of destabilized, aggregation-prone TTR variants.

View Article and Find Full Text PDF

Background: Genetic variants in the subunits of the gamma-aminobutyric acid type A (GABA) receptors are implicated in the onset of multiple pathologic conditions including genetic epilepsy. Previous work showed that pathogenic GABA subunits promote misfolding and inefficient assembly of the GABA receptors, limiting receptor expression and activity at the plasma membrane. However, GABA receptors containing variant subunits can retain activity, indicating that enhancing the folding, assembly, and trafficking of these variant receptors offers a potential opportunity to mitigate pathology associated with genetic epilepsy.

View Article and Find Full Text PDF

Traditional biochemical target-based and phenotypic cell-based screening approaches to drug discovery have produced the current covalent and non-covalent pharmacopoeia. Strategies to expand the druggable proteome include Inverse Drug Discovery, which involves incubating one weak organic electrophile at a time with the proteins of a living cell to identify the conjugates formed. An alkyne substructure in each organic electrophile enables affinity chromatography-mass spectrometry, which produces a list of proteins that each distinct compound reacts with.

View Article and Find Full Text PDF