Historically, xenia effects were hypothesized to be unique genetic contributions of pollen to seed phenotype, but most examples represent standard complementation of Mendelian traits. We identified the imprinted dosage-effect defective1 (ded1) locus in maize (Zea mays) as a paternal regulator of seed size and development. Hypomorphic alleles show a 5-10% seed weight reduction when ded1 is transmitted through the male, while homozygous mutants are defective with a 70-90% seed weight reduction.
View Article and Find Full Text PDFBackground: Pea (Pisum sativum) is a prevalent cool-season crop that produces seeds valued for their high protein content. Modern cultivars have incorporated several traits that improved harvested yield. However, progress toward improving seed quality has received less emphasis, in part due to the lack of tools for easily and rapidly measuring seed traits.
View Article and Find Full Text PDFSeeds planted in early spring frequently experience low temperature stress in the soil during germination and early plant growth. Seed pretreatments such as priming have been shown to ameliorate the negative effects of cold soil in some crops. However, the potential beneficial effects of priming have not been widely investigated for Zea mays (maize).
View Article and Find Full Text PDFCrop improvement programs focus on characteristics that are important for plant productivity. Typically genes underlying these traits are identified and stacked to create improved cultivars. Hence, identification of valuable traits for plant productivity is critical for plant improvement.
View Article and Find Full Text PDFSingle seed near-infrared reflectance (NIR) spectroscopy predicts soybean (Glycine max) seed quality traits of moisture, oil, and protein. We tested the accuracy of transferring calibrations between different single seed NIR analyzers of the same design by collecting NIR spectra and analytical trait data for globally diverse soybean germplasm. X-ray microcomputed tomography (μCT) was used to collect seed density and shape traits to enhance the number of soybean traits that can be predicted from single seed NIR.
View Article and Find Full Text PDFPositional cloning in maize (Zea mays) requires development of markers in the region of interest. We found that primers designed to amplify annotated insertion-deletion polymorphisms of seven base pairs or greater between B73 and Mo17 produce polymorphic markers at a 97% frequency with 49% of the products showing co-dominant fragment length polymorphisms. When the same polymorphisms are used to develop markers for B73 and W22 or Mo17 and W22 mapping populations, 22% and 31% of markers are co-dominant, respectively.
View Article and Find Full Text PDFMaize kernel density affects milling quality of the grain. Kernel density of bulk samples can be predicted by near-infrared reflectance (NIR) spectroscopy, but no accurate method to measure individual kernel density has been reported. This study demonstrates that individual kernel density and volume are accurately measured using X-ray microcomputed tomography (μCT).
View Article and Find Full Text PDFBackground: Members of the cation diffusion facilitator (CDF) family are integral membrane divalent cation transporters that transport metal ions out of the cytoplasm either into the extracellular space or into internal compartments such as the vacuole. The spectrum of cations known to be transported by proteins of the CDF family include Zn, Fe, Co, Cd, and Mn. Members of this family have been identified in prokaryotes, eukaryotes, and archaea, and in sequenced plant genomes.
View Article and Find Full Text PDF* The extreme phenotype of zinc (Zn) hyperaccumulation, which is found in several Brassicaceae species, is determined by mechanisms that promote elevated Zn tolerance and high Zn accumulation in shoots. * We used reciprocal grafting between a Zn hyperaccumulator, Thlaspi caerulescens, and a Zn nonaccumulator, Thlaspi perfoliatum, to determine the relative importance of roots and shoots in Zn hyperaccumulation and hypertolerance. * Leaves from plants with a T.
View Article and Find Full Text PDFThe integral membrane protein Thlaspi goesingense metal tolerance protein 1 (TgMTP1) has been suggested to play an important role in Zn hyperaccumulation in T. goesingense. Here, we show that the TgMTP1 protein is accumulated to high levels at the vacuolar membrane in shoot tissue of T.
View Article and Find Full Text PDFTo avoid metal toxicity, organisms have evolved mechanisms including efflux of metal ions from cells and sequestration into internal cellular compartments. Members of the ubiquitous cation diffusion facilitator (CDF) family are known to play an important role in these processes. Overexpression of the plant CDF family member metal tolerance protein 1 (MTP1) from the Ni/Zn hyperaccumulator Thlaspi goesingense (TgMTP1), in the Saccharomyces cerevisiaeDelta zinc resistance conferring (zrc)1Delta cobalt transporter (cot)1 double mutant, suppressed the Zn sensitivity of this strain.
View Article and Find Full Text PDF