A significant number of proteins possess sizable intrinsically disordered regions (IDRs). Due to the dynamic nature of IDRs, NMR spectroscopy is often the tool of choice for characterizing these segments. However, the application of NMR to IDRs is often hindered by their instability, spectral overlap and resonance assignment difficulties.
View Article and Find Full Text PDFA convergent and scalable synthesis of the archazolid western hemisphere has been completed. The V-ATPase inhibitory activity of this compound along with a previously prepared eastern domain was then tested using a convenient Arabidopsis-based V-ATPase assay.
View Article and Find Full Text PDFArabidopsis mutants containing gene disruptions in AHA1 and AHA2, the two most highly expressed isoforms of the Arabidopsis plasma membrane H(+)-ATPase family, have been isolated and characterized. Plants containing homozygous loss-of-function mutations in either gene grew normally under laboratory conditions. Transcriptome and mass spectrometric measurements demonstrate that lack of lethality in the single gene mutations is not associated with compensation by increases in RNA or protein levels.
View Article and Find Full Text PDFIn plants, both endogenous mechanisms and environmental signals regulate developmental transitions such as seed germination, induction of flowering, leaf senescence and shedding of senescent organs. Auxin response factors (ARFs) are transcription factors that mediate responses to the plant hormone auxin. We have examined Arabidopsis lines carrying T-DNA insertions in AUXIN RESPONSE FACTOR1 (ARF1) and ARF2 genes.
View Article and Find Full Text PDFThe plasma membrane in plant cells is energized with an electrical potential and proton gradient generated through the action of H+ pumps belonging to the P-type ATPase superfamily. The Arabidopsis genome encodes 11 plasma membrane H+ pumps. Auto-inhibited H+-ATPase isoform 10 (AHA10) is expressed primarily in developing seeds.
View Article and Find Full Text PDFThe plasma membrane proton pump (H(+)-ATPase) found in plants and fungi is a P-type ATPase with a polypeptide sequence, structure, and in vivo function similar to the mammalian sodium pump (Na(+), K(+)-ATPase). Despite its hypothetical importance for generating and maintaining the proton motive force that energizes the carriers and channels that underlie plant nutrition, genetic evidence for such a central function has not yet been reported. Using a reverse genetic approach for investigating each of the 11 isoforms in the Arabidopsis H(+)-ATPase (AHA) gene family, we found that one member, AHA3, is essential for pollen formation.
View Article and Find Full Text PDFA key component of a sound functional genomics infrastructure is the availability of a knockout mutant for every gene in the genome. A fruitful approach to systematically knockingout genes in the plant Arabidopsis thaliana has been the use of transferred-DNA (T-DNA) from Agrobacterium tumefaciens as an insertional mutagen. One of the assumptions underlying the use of T-DNA as a mutagen is that the insertion of these DNA elements into the Arabidopsis genome occurs at randomly selected locations.
View Article and Find Full Text PDF